Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Search

12 results

Filter
Fraud detection
Banking
Deployment
Fraud Credit card Cybersecurity Random forest Keras Anomaly detection Autoencoder
  1. Go to item
    Workflow
    Fraud Detection: Model Training
    Fraud Fraud detection Random forest
    +5
    This workflow reads in the creditcard.csv file and trains and evaluates a Random Forest model to classify transactions as either …
    knime > Examples > 50_Applications > 39_Fraud_Detection > 01_Fraud_Detection_Model_Training
    0
    knime
  2. Go to item
    Workflow
    Fraud Detection: Model Deployment
    Fraud Fraud detection Random forest
    +5
    This workflow, the deployment workflow, reads the trained model, as well as the new transaction and applies the model to classify…
    knime > Examples > 50_Applications > 39_Fraud_Detection > 02_Fraud_Detection_Deployment
    1
    knime
  3. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection Deployment
    Autoencoder Keras Neural network
    +16
    Read Keras model. Read deployment data, which are normalized into range [0,1]. Apply the Keras model to the deployment data, calc…
    knime > Examples > 50_Applications > 39_Fraud_Detection > 04_Keras_Autoencoder_for_Fraud_Detection_Deployment
    1
    knime
  4. Go to item
    Workflow
    Isolation Forest for Fraud Detection: Model Deployment
    Fraud detection Deployment Isolation forest
    +5
    This workflow reads the trained isolation forest model, as well as the new transaction and applies the model to it. Based on the …
    knime > Examples > 50_Applications > 39_Fraud_Detection > 06_Isolation_Forest_for_Fraud_Detection_Deployment
    0
    knime
  5. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection - Deployment
    Autoencoder Keras Neural network
    +16
    Exercise of the L4-DL Introduction to Deep Learning Course. The goal of this exercise is to apply a trained autoencoder to new tr…
    knime > Education > Courses > L4-DL Introduction to Deep Learning > Session2 > Exercises > 02_Fraud_Detection_Deployment_Exercise
    0
    knime
  6. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection - Deployment
    Autoencoder Keras Neural network
    +16
    Exercise of the L4-DL Introduction to Deep Learning Course. The goal of this exercise is to apply a trained autoencoder to new tr…
    knime > Education > Courses > L4-DL Introduction to Deep Learning > Session2 > Solutions > 02_Fraud_Detection_Deployment_Solution
    0
    knime
  7. Go to item
    Workflow
    Fraud Detection: Table Input
    Fraud Fraud detection Random forest
    +6
    This workflow showcases how the Container Input (Table) and Container Output (Table) nodes can be used to create a REST API for a…
    jtyler > KNIME-Edge-Server-Workflows > Example_Use_Cases > General > Fraud Detection > 02_Fraud_Detection_Table_Input
    0
    jtyler
  8. Go to item
    Workflow
    Fraud Detection: JSON Input
    Fraud Fraud detection Random forest
    +6
    This workflow showcases how the Container Input (JSON) and Container Output (JSON) nodes can be used to create a REST API for a w…
    jtyler > KNIME-Edge-Server-Workflows > Example_Use_Cases > General > Fraud Detection > 04_Fraud_Detection_JSON_Input
    0
    jtyler
  9. Go to item
    Workflow
    Fraud Detection: Row Input
    Fraud Fraud detection Random forest
    +6
    This workflow showcases how the Container Input (Row) and Container Output (Row) nodes can be used to create a REST API for a wor…
    jtyler > KNIME-Edge-Server-Workflows > Example_Use_Cases > General > Fraud Detection > 01_Fraud_Detection_Row_Input
    0
    jtyler
  10. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection - Integrated Deployment Call
    Autoencoder Keras Neural network
    +16
    This workflow executes the model generated by the Integrated deployment to get a prediction of fraudolent transaction.
    knime > Education > Courses > L4-DL Introduction to Deep Learning > Supplementary workflows > Autoencoder > 02_Fraud_Detection_Call
    0
    knime
  11. Go to item
    Workflow
    Fraud Detection: Row and Variable Input
    Fraud Fraud detection Random forest
    +6
    This workflow showcases how the Container Input (Row), Container Input (Variable) and Container Output (JSON) nodes can be used t…
    jtyler > KNIME-Edge-Server-Workflows > Example_Use_Cases > General > Fraud Detection > 03_Fraud_Detection_Row_And_Variable_Input
    0
    jtyler
  12. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection - Deployment
    Autoencoder Keras Neural network
    +15
    This workflow applies a trained autoencoder model to detect fraudulent transactions.
    kathrin > Codeless Deep Learning with KNIME > Chapter 5 > 02_Autoencoder_for_Fraud_Detection_Deployment
    1
    kathrin

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits