Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Search

51 results

Filter
GIDS
TheGuideBook Academia Exercise Classification Education
+3
  1. Go to item
    Workflow
    Market Basket Analysis: Building Association Rules
    Retail Association rules Recommandation engine
    +11
    This workflow builds a recommandation engine for market basket analysis using the Borgelt version of the Apriori algorithm.
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 04_Association_Rules_for_MarketBasketAnalysis
    0
  2. Go to item
    Workflow
    Clustering - Solution
    Cluster K-Means Algorithm
    +5
    - Filter rows - Train a k-Means model - Visualize clustered entries on Scatter plot and OSM Map - Calculate Silhouette Coefficien…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter7_Clustering > Clustering_Solution
    0
  3. Go to item
    Workflow
    Introduction
    GIDS Exercise Academia
    +1
    Exercise to perform basic operations in KNIME: - Read data - Filter rows - Filter columns - Write and plot data
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter1_Introduction > Introduction_Solution
    0
  4. Go to item
    Workflow
    Logistic Regression
    TheGuideBook Classification Logistic Regression
    +1
    Using the adult dataset, this workflow performs binary classification using a Logistic Regression. The target is the income colum…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter8 > 03_LogisticRegression
    0
  5. Go to item
    Workflow
    Naive Bayes
    TheGuideBook Naive Bayes Classification
    +1
    Using the adult dataset, this workflow performs binary classification using the Naive Bayes algorithm. The target is the income c…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter8 > 02_NaiveBayes
    0
  6. Go to item
    Workflow
    Introduction
    GIDS Exercise Academia
    +1
    Exercise to perform basic operations in KNIME: - Read data - Filter rows - Filter columns - Write and plot data
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter1_Introduction > Introduction_Exercise
    0
  7. Go to item
    Workflow
    Clustering
    Cluster K-Means Algorithm
    +5
    - Filter rows - Train a k-Means model - Visualize clustered entries on Scatter plot and OSM Map - Calculate Silhouette Coefficien…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter7_Clustering > Clustering_Exercise
    0
  8. Go to item
    Workflow
    SVM Exercise with Parameter Optimization
    SVM Support vector machine Classification
    +4
    Exercise for SVM. Classification of 2D silhouette attributes with SVM classifier. Oprimize the c parameter for the margin hardnes…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter9_SVM > SVM_Solution
    0
  9. Go to item
    Workflow
    Classification of the iris data using kNN
    TheGuideBook KNN K Nearest Neighbor
    +2
    This workflow solves a classification problem on the iris dataset using the k-Nearest Neighbor (kNN) algorithm.
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter9 > 01_kNN
    2
  10. Go to item
    Workflow
    Hierarchical Clustering
    Clustering Machine learning Data mining
    +3
    This workflow clusters the iris dataset using Hierarchical Clustering
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 01_HierarchicalClustering
    1
  11. Go to item
    Workflow
    Clustering with DBSCAN
    Clustering Machine learning Data mining
    +3
    This workflow performs clustering of the iris dataset using DBSCAN. Notice the Numeric Distances node to feed the DBSCAN node wit…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 03_DBSCAN
    2
  12. Go to item
    Workflow
    Random Forest, Gradient Boosted Trees, and TreeEnsemble
    Classification Machine learning Prediction
    +11
    This workflow solves a binary classification problem on the adult dataset using more advanced algorithms: - Random Forest - Gradi…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter9 > 04_TreeEnsemble
    0
  13. Go to item
    Workflow
    Decision Tree
    TheGuideBook Decision Tree Classification
    +1
    Using the adult dataset, this workflow performs binary classification (income > or < 50K) using a Decision Tree. The target is th…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter8 > 01_DecisionTree
    1
  14. Go to item
    Workflow
    SVM Exercise with Parameter Optimization
    SVM Support vector machine Classification
    +4
    Exercise for SVM. Classification of 2D silhouette attributes with SVM classifier. Oprimize the c parameter for the margin hardnes…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter9_SVM > SVM_Exercise
    0
  15. Go to item
    Workflow
    SVM on iris dataset
    TheGuideBook SVM Classification
    +2
    This workflow solves a classification problem on the iris dataset using Support Vector Machines (SVM).
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter9 > 03_SVM
    0
  16. Go to item
    Workflow
    Clustering with k-Means
    Clustering K-Means Machine learning
    +3
    This workflow performs clustering of the iris dataset using k-Means. Two workflows: one to build the k-Means prototypes (top) and…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 02_kMeans
    4
  17. Go to item
    Workflow
    Ensemble methods
    Classification Random forest Gradient boosted trees
    +7
    Ensembles: binary classification of house ranking (high/low rank). - Random forest - Gradient Boosted Trees - Training - Evaluati…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter9_Ensemble_Methods > Ensemble_Exercise
    0
  18. Go to item
    Workflow
    Linear Regression
    GIDS Academia Exercise
    +2
    Linear regression: predict house price. - Partition data into training and test set - Train a linear regression model - Apply the…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter8_Regression > Linear_Regression_Solution
    0
  19. Go to item
    Workflow
    Logistic Regression
    Logistic regression Classification Education
    +4
    Logistic Regression: predict wine color. - Normalize numerical columns - Partition the dataset into train and test set - Train a …
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter8_Regression > Logistic_Regression_Exercise
    0
  20. Go to item
    Workflow
    Logistic Regression
    Logistic regression Classification Education
    +4
    Logistic Regression: predict wine color. - Normalize numerical columns - Partition the dataset into train and test set - Train a …
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter8_Regression > Logistic_Regression_Solution
    0

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits