Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Search

21 results

Filter
Classification Algorithms
Functions
Weka (3.7)
Analytics Integrations Weka
  1. Go to item
    Node / Learner
    GaussianProcesses (3.7)
    Analytics Integrations Weka
    +3
    Implements Gaussian processes for regression without hyperparameter-tuning To make choosing an appropriate noise level easier, th…
    0
    knime
  2. Go to item
    Node / Learner
    IsotonicRegression (3.7)
    Analytics Integrations Weka
    +3
    Learns an isotonic regression model Picks the attribute that results in the lowest squared error.Missing values are not allowed. …
    0
    knime
  3. Go to item
    Node / Learner
    KernelLogisticRegression (3.7)
    Analytics Integrations Weka
    +3
    This classifier generates a two-class kernel logistic regression model The model is fit by minimizing the negative log-likelihood…
    0
    knime
  4. Go to item
    Node / Learner
    LibLINEAR (3.7)
    Analytics Integrations Weka
    +3
    A wrapper class for the liblinear classifier. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin (2008) LIBL…
    0
    knime
  5. Go to item
    Node / Learner
    LibSVM (3.7)
    Analytics Integrations Weka
    +3
    A wrapper class for the libsvm tools (the libsvm classes, typically the jar file, need to be in the classpath to use this classif…
    0
    knime
  6. Go to item
    Node / Learner
    LinearRegression (3.7)
    Analytics Integrations Weka
    +3
    Class for using linear regression for prediction Uses the Akaike criterion for model selection, and is able to deal with weighted…
    0
    knime
  7. Go to item
    Node / Learner
    Logistic (3.7)
    Analytics Integrations Weka
    +3
    Class for building and using a multinomial logistic regression model with a ridge estimator. There are some modifications, howeve…
    0
    knime
  8. Go to item
    Node / Learner
    MultilayerPerceptron (3.7)
    Analytics Integrations Weka
    +3
    A Classifier that uses backpropagation to classify instances. This network can be built by hand, created by an algorithm or both …
    0
    knime
  9. Go to item
    Node / Learner
    PaceRegression (3.7)
    Analytics Integrations Weka
    +3
    Class for building pace regression linear models and using them for prediction Under regularity conditions, pace regression is pr…
    0
    knime
  10. Go to item
    Node / Learner
    RBFClassifier (3.7)
    Analytics Integrations Weka
    +3
    Class implementing radial basis function networks for classification, trained in a fully supervised manner using WEKA's Optimizat…
    0
    knime
  11. Go to item
    Node / Learner
    RBFNetwork (3.7)
    Analytics Integrations Weka
    +3
    Class that implements a normalized Gaussian radial basisbasis function network. It uses the k-means clustering algorithm to provi…
    0
    knime
  12. Go to item
    Node / Learner
    RBFRegressor (3.7)
    Analytics Integrations Weka
    +3
    Class implementing radial basis function networks for classification, trained in a fully supervised manner using WEKA's Optimizat…
    0
    knime
  13. Go to item
    Node / Learner
    SGD (3.7)
    Analytics Integrations Weka
    +3
    Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression, sq…
    0
    knime
  14. Go to item
    Node / Learner
    SGDText (3.7)
    Analytics Integrations Weka
    +3
    Implements stochastic gradient descent for learning a linear binary class SVM or binary class logistic regression on text data Op…
    0
    knime
  15. Go to item
    Node / Learner
    SimpleLinearRegression (3.7)
    Analytics Integrations Weka
    +3
    Learns a simple linear regression model Picks the attribute that results in the lowest squared error.Missing values are not allow…
    0
    knime
  16. Go to item
    Node / Learner
    SimpleLogistic (3.7)
    Analytics Integrations Weka
    +3
    Classifier for building linear logistic regression models LogitBoost with simple regression functions as base learners is used fo…
    0
    knime
  17. Go to item
    Node / Learner
    SMO (3.7)
    Analytics Integrations Weka
    +3
    Implements John Platt's sequential minimal optimization algorithm for training a support vector classifier. This implementation g…
    0
    knime
  18. Go to item
    Node / Learner
    SMOreg (3.7)
    Analytics Integrations Weka
    +3
    SMOreg implements the support vector machine for regression The parameters can be learned using various algorithms.The algorithm …
    0
    knime
  19. Go to item
    Node / Learner
    SPegasos (3.7)
    Analytics Integrations Weka
    +3
    Implements the stochastic variant of the Pegasos (Primal Estimated sub-GrAdient SOlver for SVM) method of Shalev-Shwartz et al (2…
    0
    knime
  20. Go to item
    Node / Learner
    VotedPerceptron (3.7)
    Analytics Integrations Weka
    +3
    Implementation of the voted perceptron algorithm by Freund and Schapire Globally replaces all missing values, and transforms nomi…
    0
    knime

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits