Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Search

34 results

Filter
Classification Algorithms
Meta
Weka (3.7)
Analytics Integrations Weka NestedDichotomies
  1. Go to item
    Node / Learner
    Bagging (3.7)
    Analytics Integrations Weka
    +3
    Class for bagging a classifier to reduce variance Can do classification and regression depending on the base learner. For more in…
    0
    knime
  2. Go to item
    Node / Learner
    ClassificationViaClustering (3.7)
    Analytics Integrations Weka
    +3
    A simple meta-classifier that uses a clusterer for classification For cluster algorithms that use a fixed number of clusterers, l…
    0
    knime
  3. Go to item
    Node / Learner
    ClassificationViaRegression (3.7)
    Analytics Integrations Weka
    +3
    Class for doing classification using regression methods Class is binarized and one regression model is built for each class value…
    0
    knime
  4. Go to item
    Node / Learner
    CostSensitiveClassifier (3.7)
    Analytics Integrations Weka
    +3
    A metaclassifier that makes its base classifier cost-sensitive Two methods can be used to introduce cost-sensitivity: reweighting…
    0
    knime
  5. Go to item
    Node / Learner
    CVParameterSelection (3.7)
    Analytics Integrations Weka
    +3
    Class for performing parameter selection by cross-validation for any classifier. For more information, see: R Kohavi (1995).Wrapp…
    0
    knime
  6. Go to item
    Node / Learner
    Dagging (3.7)
    Analytics Integrations Weka
    +3
    This meta classifier creates a number of disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the…
    0
    knime
  7. Go to item
    Node / Learner
    OrdinalClassClassifier (3.7)
    Analytics Integrations Weka
    +3
    Meta classifier that allows standard classification algorithms to be applied to ordinal class problems. For more information see:…
    0
    knime
  8. Go to item
    Node / Learner
    RacedIncrementalLogitBoost (3.7)
    Analytics Integrations Weka
    +3
    Classifier for incremental learning of large datasets by way of racing logit-boosted committees. For more information see: Eibe F…
    0
    knime
  9. Go to item
    Node / Learner
    RandomCommittee (3.7)
    Analytics Integrations Weka
    +3
    Class for building an ensemble of randomizable base classifiers Each base classifiers is built using a different random number se…
    0
    knime
  10. Go to item
    Node / Learner
    RandomSubSpace (3.7)
    Analytics Integrations Weka
    +3
    This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generali…
    0
    knime
  11. Go to item
    Node / Learner
    RealAdaBoost (3.7)
    Analytics Integrations Weka
    +3
    Class for boosting a 2-class classifier using the Real Adaboost method. For more information, see J Friedman, T.Hastie, R. Tibshi…
    0
    knime
  12. Go to item
    Node / Learner
    RegressionByDiscretization (3.7)
    Analytics Integrations Weka
    +3
    A regression scheme that employs any classifier on a copy of the data that has the class attribute discretized The predicted valu…
    0
    knime
  13. Go to item
    Node / Learner
    Decorate (3.7)
    Analytics Integrations Weka
    +3
    DECORATE is a meta-learner for building diverse ensembles of classifiers by using specially constructed artificial training examp…
    0
    knime
  14. Go to item
    Node / Learner
    END (3.7)
    Analytics Integrations Weka
    +3
    A meta classifier for handling multi-class datasets with 2-class classifiers by building an ensemble of nested dichotomies. For m…
    0
    knime
  15. Go to item
    Node / Learner
    EnsembleSelection (3.7)
    Analytics Integrations Weka
    +3
    Combines several classifiers using the ensemble selection method For more information, see: Caruana, Rich, Niculescu, Alex, Crew,…
    0
    knime
  16. Go to item
    Node / Learner
    FilteredClassifier (3.7)
    Analytics Integrations Weka
    +3
    Class for running an arbitrary classifier on data that has been passed through an arbitrary filter Like the classifier, the struc…
    0
    knime
  17. Go to item
    Node / Learner
    Grading (3.7)
    Analytics Integrations Weka
    +3
    Implements Grading The base classifiers are "graded". For more information, see A.K.Seewald, J. Fuernkranz: An Evaluation of Grad…
    0
    knime
  18. Go to item
    Node / Learner
    RotationForest (3.7)
    Analytics Integrations Weka
    +3
    Class for construction a Rotation Forest Can do classification and regression depending on the base learner. For more information…
    0
    knime
  19. Go to item
    Node / Learner
    Stacking (3.7)
    Analytics Integrations Weka
    +3
    Combines several classifiers using the stacking method Can do classification or regression. For more information, see David H. Wo…
    0
    knime
  20. Go to item
    Node / Learner
    StackingC (3.7)
    Analytics Integrations Weka
    +3
    Implements StackingC (more efficient version of stacking). For more information, see A.K Seewald: How to Make Stacking Better and…
    0
    knime

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits