Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Search

38 results

Filter
Fraud detection
Anomaly detection Fraud Banking Credit card Deployment Education Outlier detection Keras Autoencoder
  1. Go to item
    Workflow
    Outlier Detection in Medical Claims
    Fraud detection Outlier detection
    This workflow identifies outliers in medical claim data such as claims with an unusual high cost for a certain disease. Firstly, …
    knime > Examples > 50_Applications > 14_Medical_Claims > 01_Interactive_Outlier_Detection
    2
    knime
  2. Go to item
    Workflow
    Outlier Dection / Fraud Detection in Contracts
    Fraud detection Anomaly detection Text processing
    +4
    Discover anomalies / irregularities / Frauds(?) in contracts payment amounts via: - data visualization - basic stats - clustering…
    rs1 > Public > Contracts_Fraud_Detection_Usecase_example
    1
    rs1
  3. Go to item
    Workflow
    Autoencoder MNIST MidPoint Focus
    Autoencoder Keras Neural network
    +8
    Exploring the latent space of an autoencoder for dimensional reduction
    iceman > Public > Autoencoder MNIST MidPoint Focus
    1
    iceman
  4. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection - Training
    Autoencoder Keras Neural network
    +12
    This workflow trains an autoendcoder model to detect fraudulent transactions.
    kathrin > Codeless Deep Learning with KNIME > Chapter 5 > 01_Autoencoder_for_Fraud_Detection_Training
    1
    kathrin
  5. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection - Deployment
    Autoencoder Keras Neural network
    +15
    This workflow applies a trained autoencoder model to detect fraudulent transactions.
    kathrin > Codeless Deep Learning with KNIME > Chapter 5 > 02_Autoencoder_for_Fraud_Detection_Deployment
    1
    kathrin
  6. Go to item
    Workflow
    Fraud Detection: Model Deployment
    Fraud Fraud detection Random forest
    +5
    This workflow, the deployment workflow, reads the trained model, as well as the new transaction and applies the model to classify…
    knime > Examples > 50_Applications > 39_Fraud_Detection > 02_Fraud_Detection_Deployment
    1
    knime
  7. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection Deployment
    Autoencoder Keras Neural network
    +16
    Read Keras model. Read deployment data, which are normalized into range [0,1]. Apply the Keras model to the deployment data, calc…
    knime > Examples > 50_Applications > 39_Fraud_Detection > 04_Keras_Autoencoder_for_Fraud_Detection_Deployment
    1
    knime
  8. Go to item
    Workflow
    Different options to train an autoencoder using TensorFlow 2
    Autoencoder Keras Neural network
    +5
    This workflow shows the different options of training and executing a network using TF2 on the example of an autoencoder: Option …
    knime > Examples > 04_Analytics > 14_Deep_Learning > 04_TensorFlow2 > 02_Tensorflow2_Autoencoder_for_Fraud_Detection_Training
    1
    knime
  9. Go to item
    Workflow
    Keras Autoencoder for Fraud Detection Training
    Autoencoder Keras Neural network
    +16
    Partition numeric input data into a training, test, and validation set. Normalize the data into range [0,1]. Build a Keras autoen…
    knime > Examples > 50_Applications > 39_Fraud_Detection > 03_Keras_Autoencoder_for_Fraud_Detection_Training
    1
    knime
  10. Go to item
    Workflow
    Anomaly Detection (Exercise)
    Fraud detection Anomaly detection Text processing
    +5
    This workflow instructs you to detect anomalies in contracts via the IQR, z-score, and isolation forest techniques. Furthermore, …
    hayasaka > KNIME Fall Summit Training 2022 > L4-DV Low Code Data Extraction and Visualization > Session_4 > 01_Exercises > 04_Anomaly_Detection_Exercise
    0
    hayasaka
  11. Go to item
    Workflow
    Training Workflow Fraud Detection
    Integrated deployment Continous Model monitoring
    +4
    In this simple example a Random Forest model has been trained to detect potential Fraud Transactions. To train the model it has b…
    fitofeijoo > Public > 03_Examples > Fraud Detection > Level_3_Fraud Detection with Monitoring > Training > Training_workflow
    0
    fitofeijoo
  12. Go to item
    Workflow
    Outlier Dection / Fraud Detection in Contracts
    Fraud detection Anomaly detection Text processing
    +4
    Discover anomalies / irregularities / Frauds(?) in contracts payment amounts via: - data visualization - basic stats - clustering…
    chemgirl36 > Public Space > L4-DV Low Code Data Extraction and Visualization > Session_4 > 00_Demos > 01_Anomaly_Detection_Demo
    0
    chemgirl36
  13. Go to item
    Workflow
    Anomaly Detection (Exercise) - Solution
    Fraud detection Anomaly detection Text processing
    +5
    This workflow instructs you to detect anomalies in contracts via the IQR, z-score, and isolation forest techniques. Furthermore, …
    hayasaka > KNIME Fall Summit Training 2022 > L4-DV Low Code Data Extraction and Visualization > Session_4 > 02_Solutions > 04_Anomaly_Detection_Solution
    0
    hayasaka
  14. Go to item
    Workflow
    Anomaly Detection (Exercise)
    Fraud detection Anomaly detection Text processing
    +5
    This workflow instructs you to detect anomalies in contracts via the IQR, z-score, and isolation forest techniques. Furthermore, …
    chemgirl36 > Public Space > L4-DV Low Code Data Extraction and Visualization > Session_4 > 01_Exercises > 04_Anomaly_Detection_Exercise
    0
    chemgirl36
  15. Go to item
    Workflow
    Training Workflow Fraud Detection
    Integrated deployment Continous Model monitoring
    +4
    In this simple example a Random Forest model has been trained to detect potential Fraud Transactions. To train the model it has b…
    knime > Continuous Deployment for Data Science > 03_Examples > Fraud Detection > Level_3_Fraud Detection with Monitoring > Training > Training_workflow
    0
    knime
  16. Go to item
    Workflow
    Outlier Dection / Fraud Detection in Contracts
    Fraud detection Anomaly detection Text processing
    +4
    Discover anomalies / irregularities / Frauds(?) in contracts payment amounts via: - data visualization - basic stats - clustering…
    hayasaka > KNIME Fall Summit Training 2022 > L4-DV Low Code Data Extraction and Visualization > Session_4 > 00_Demos > 01_Anomaly_Detection_Demo
    0
    hayasaka
  17. Go to item
    Workflow
    Anomaly Detection (Exercise) - Solution
    Fraud detection Anomaly detection Text processing
    +5
    This workflow instructs you to detect anomalies in contracts via the IQR, z-score, and isolation forest techniques. Furthermore, …
    chemgirl36 > Public Space > L4-DV Low Code Data Extraction and Visualization > Session_4 > 02_Solutions > 04_Anomaly_Detection_Solution
    0
    chemgirl36
  18. Go to item
    Workflow
    Fraud Detection: Row and Variable Input
    Fraud Fraud detection Random forest
    +6
    This workflow showcases how the Container Input (Row), Container Input (Variable) and Container Output (JSON) nodes can be used t…
    jtyler > KNIME-Edge-Server-Workflows > Example_Use_Cases > General > Fraud Detection > 03_Fraud_Detection_Row_And_Variable_Input
    0
    jtyler
  19. Go to item
    Workflow
    Fraud Detection: JSON Input
    Fraud Fraud detection Random forest
    +6
    This workflow showcases how the Container Input (JSON) and Container Output (JSON) nodes can be used to create a REST API for a w…
    jtyler > KNIME-Edge-Server-Workflows > Example_Use_Cases > General > Fraud Detection > 04_Fraud_Detection_JSON_Input
    0
    jtyler
  20. Go to item
    Workflow
    Fraud Detection: Table Input
    Fraud Fraud detection Random forest
    +6
    This workflow showcases how the Container Input (Table) and Container Output (Table) nodes can be used to create a REST API for a…
    jtyler > KNIME-Edge-Server-Workflows > Example_Use_Cases > General > Fraud Detection > 02_Fraud_Detection_Table_Input
    0
    jtyler

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits