Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Search

10 results

Filter
ROC
Machine Learning Bag of Models Decision Tree Logistic Regression PBAC
+4
  1. Go to item
    Workflow
    ML Prototyping for Bioactivity Data
    Cheminformatics Webportal Data Visualization
    +7
    This workflow demonstrates model building for a bioactivity data set with several machine learning methods and binary fingerprint…
    knime > Life Sciences > Events > 2021_03_03_Cheminformatics_with_KNIME_Webinar > ML Prototyping for Bioactivity Data
    5
  2. Go to item
    Workflow
    Active Learning with Body Mass Index Heuristic
    Active learning Potential density Uncertainty
    +14
    This workflow uses a simple example to demonstrate one possible structure for an active learning application and compares the eff…
    paolotamag > Public > 04_Active_Learning_with_Body_Mass_Index
    1
  3. Go to item
    Workflow
    Evotec_StructureBasedVirtualScreening_Calibration
    Decoy Sbvs Calibration
    +6
    Workflow for Structure-based Virtual Screening calibration There are two main parts 1) decoy generation 2) docking evaluation usi…
    emilie_pihan > Evotec > Evotec_StructureBasedVirtualScreening_Calibration
    1
  4. Go to item
    Workflow
    Group 2 Training, Evaluation and Optimization
    Predictive Analytics Machine Learning Parameter Optimization
    +6
    Tasks for Group 2 in KNIME Data Science Learnathon - Train a Decision Tree on the training set, and apply the model to the test s…
    maarit > University Course > Learnathon UM April 21 > Challenges > Group2_Training_Evaluation_and_Optimization > Group2_1_Training_Evaluation_and_Optimization
    0
  5. Go to item
    Workflow
    Group 2 Training, Evaluation and Optimization
    Predictive Analytics Machine Learning Parameter Optimization
    +6
    Solution to the tasks for Group 2 in KNIME Data Science Learnathon - Train a Decision Tree on the training set, and apply the mod…
    knime > Education > Learnathons > From_Raw_Data_To_Deployment > Learnathon-Solutions > Group2_Training_Evaluation_and_Optimization > Group2_1_Training_Evaluation_and_Optimization
    0
  6. Go to item
    Workflow
    Training and Testing a Model (decision tree)
    TheGuideBook Decision tree Testing
    +11
    This workflow shows how to train and test a basic classification model. Using the adult dataset, a decision tree is trained and t…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter5 > 01_CrossValidation_Scorer_ROC
    0
  7. Go to item
    Workflow
    Active Learning with Basic SVM Model
    Active learning Potential density Uncertainty
    +12
    This workflow uses a simple example to demonstrate one possible structure for an active learning application and compares the eff…
    knime > Examples > 04_Analytics > 12_Active_Learning > 04_Active_Learning_with_basic_SVM
    0
  8. Go to item
    Workflow
    Active Learning with Basic SVM Model
    Active learning Potential density Uncertainty
    +12
    This workflow uses a simple example to demonstrate one possible structure for an active learning application and compares the eff…
    ngohienduong > Public > 04_Active_Learning_with_basic_SVM
    0
  9. Go to item
    Workflow
    Group 2 Training, Evaluation and Optimization
    Predictive Analytics Machine Learning Parameter Optimization
    +6
    Solution to the tasks for Group 2 in KNIME Data Science Learnathon - Train a Decision Tree on the training set, and apply the mod…
    knime > Education > Learnathons > From_Raw_Data_To_Deployment > Learnathon > Challenges > Group2_Training_Evaluation_and_Optimization > Group2_1_Training_Evaluation_and_Optimization
    0
  10. Go to item
    Workflow
    xgboost parameter tuning and handling large datasets
    Xgboost Handling large datasets ROC
    +5
    This example demonstrates following: 1. Handling Large datasets in KNIME--Setting Memory Policy 2. Feature Engineering 3. ROC cur…
    ashokharnal > Collection of Components and Workflows > xgboost parameter tuning using Bayes Optimization > xgboost parameter tuning (maximise ROC) using Bayes Optimization
    0

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits