Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Search

10 results

Filter
TheGuideBook
Machine learning
GIDS Data mining Clustering Hierarchical clustering Academia
+3
  1. Go to item
    Workflow
    Clustering with k-Means
    Clustering K-Means Machine learning
    +3
    This workflow performs clustering of the iris dataset using k-Means. Two workflows: one to build the k-Means prototypes (top) and…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 02_kMeans
    5
  2. Go to item
    Workflow
    Clustering with DBSCAN
    Clustering Machine learning Data mining
    +3
    This workflow performs clustering of the iris dataset using DBSCAN. Notice the Numeric Distances node to feed the DBSCAN node wit…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 03_DBSCAN
    2
  3. Go to item
    Workflow
    Hierarchical Clustering
    Clustering Machine learning Data mining
    +3
    This workflow clusters the iris dataset using Hierarchical Clustering
    jjmie > Public > 01_HierarchicalClustering
    1
  4. Go to item
    Workflow
    Hierarchical Clustering
    Clustering Machine learning Data mining
    +3
    This workflow clusters the iris dataset using Hierarchical Clustering
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 01_HierarchicalClustering
    1
  5. Go to item
    Workflow
    Hierarchical Clustering
    Clustering Machine learning Data mining
    +3
    This workflow clusters the iris dataset using Hierarchical Clustering
    emilio_s > Public Exercises > DL Italia > Lesson 3 > 5) 01_HierarchicalClustering
    0
  6. Go to item
    Workflow
    Implementation of Different Clustering Algorithms
    Clustering Machine learning Data mining
    +4
    This workflow clusters the iris dataset using Hierarchical Clustering, DBSCAN and k-means
    kathrin > University Lectures > Lecture HU Berlin (Clustering) > Clustering_Exercises > 01_Clustering_Algorithms_Exercise
    0
  7. Go to item
    Workflow
    Regression Tree - Solution
    Regression Machine learning Education
    +4
    Regression Tree: predict house price. - Partition data into training and test set - Train a regression tree model - Apply the tra…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter8_Decision_and_Regression_Trees > Regression_Tree_Solution
    0
  8. Go to item
    Workflow
    Regression Tree
    Regression Machine learning Education
    +4
    Regression Tree: predict house price. - Partition data into training and test set - Train a regression tree model - Apply the tra…
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter8_Decision_and_Regression_Trees > Regression_Tree_Exercise
    0
  9. Go to item
    Workflow
    How to use normalization in a data science solution
    Machine learning Data mining TheGuideBook
    +4
    This is how to apply normalization correctly in a data science problem. The normalization model is built on the training set and …
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter6 > 02_How_to_use_normalization
    0
  10. Go to item
    Workflow
    Random Forest, Gradient Boosted Trees, and TreeEnsemble
    Classification Machine learning Prediction
    +11
    This workflow solves a binary classification problem on the adult dataset using more advanced algorithms: - Random Forest - Gradi…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter9 > 04_TreeEnsemble
    0

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits