Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Search

9 results

Filter
Explanation
Machine learning interpretability Explain Interpret Machine learning Mli LIME Instance-level explanation Model Reason code
  1. Go to item
    Workflow
    TreeSHAP Example Workflow
    Explainable-ml SHAP Explainable
    +7
    An overview of the functions for the Tree SHAP nodes for the newly released TreeSHAP package.
    morris_kurz > Public > TreeSHAP Example Workflow
    1
    morris_kurz
  2. Go to item
    Workflow
    Guided Analytics with Shared Components - Preview
    Guided analytics Shared component AutoML
    +13
    --------------- !!! DISCLAIMER !!! --------------- These Components are not-verified Beta versions shared in Fall 2019 on my pers…
    paolotamag > Public > Guided_Analytics_with_Shared_Components
    1
    paolotamag
  3. Go to item
    Workflow
    Compute Local Model-agnostic Explanations (LIMEs)
    LIME Machine learning interpretability Mli
    +9
    This is an example for computing explanation using LIME. An XGBoost model was picked, but any model and its set of Learner and Pr…
    knime > Examples > 04_Analytics > 17_Machine_Learning_Interpretability > 01_Compute_LIMEs
    1
    knime
  4. Go to item
    Workflow
    LIME Loop Nodes with a Custom Regression Model
    LIME Machine learning interpretability Mli
    +10
    An XGBoost Tree Ensemble Regression model was picked, but any model and its set of Learner and Predictor nodes can be used. - Rea…
    knime > XAI Space > Regression > Custom Models > 03_Compute_LIMEs
    0
    knime
  5. Go to item
    Workflow
    LIME Loop Nodes with AutoML (Regression)
    LIME Machine learning interpretability Mli
    +10
    This is an example for computing explanation using LIME. AutoML (Regression) component is used to select the best model, but any …
    knime > XAI Space > Regression > AutoML > 03_Compute_LIMEs
    0
    knime
  6. Go to item
    Workflow
    LIME Loop Nodes with a Custom Model
    LIME Machine learning interpretability Mli
    +9
    This is an example for computing explanation using LIME. An XGBoost model was picked, but any model and its set of Learner and Pr…
    knime > XAI Space > Classification > Custom Models > 07_Compute_LIMEs
    0
    knime
  7. Go to item
    Workflow
    LIME Loop Nodes with AutoML
    LIME Machine learning interpretability Mli
    +9
    This is an example for computing explanation using LIME. AutoML component was used to pick the best model, but any model and its …
    knime > XAI Space > Classification > AutoML > 07_Compute_LIMEs
    0
    knime
  8. Go to item
    Workflow
    Compute Local Model-agnostic Explanations (LIMEs)
    LIME Machine learning interpretability Mli
    +9
    這是使用LIME計算說明的示例。 選擇了XGBoost模型,但是可以使用任何模型及其Learner和Predictor節點集。 -閱讀有關葡萄酒的數據集 -在訓練和測試中對數據進行分區 -選擇一些測試集實例行進行解釋 -在輸入表中為每個實例創建本地樣本(LI…
    jamestsai > Public > 01_Compute_LIMEs
    0
    jamestsai
  9. Go to item
    Workflow
    Interactive MLI Composite View
    Machine learning interpretability MLI PDP
    +14
    This worflow will show how to use the interactive views of JavaScript nodes to visualize in a single Composite View a number of M…
    knime > Examples > 04_Analytics > 17_Machine_Learning_Interpretability > 05_Interactive_MLI_Composite_View
    0
    knime

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits