Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Search

40 results

Filter
Xgboost
Automl H2o Knime H2o.ai Learning
+5
  1. Go to item
    Workflow
    Validating KNIME Workflows
    Reproducibility Validation Testing
    +3
    This workflow demonstrates a technique to deploy a model prediction workflow as a web service and to validate that it is doing wh…
    knime > Examples > 50_Applications > 51_Model_Deployment_and_Validation > 01_Deploying_and_Validating_models_as_WebServices
    3
  2. Go to item
    Workflow
    H2O.ai AutoML (wrapped with Python) in KNIME for regression problems
    H2o Automl Knime
    +8
    H2O.ai AutoML (wrapped with Python) in KNIME for regression problems - a powerful auto-machine-learning framework (https://hub.kn…
    mlauber71 > Public > automl > kn_automl_h2o_regression_python
    1
  3. Go to item
    Workflow
    H2O.ai AutoML (wrapped with R) in KNIME for regression problems
    H2o Automl Knime
    +8
    H2O.ai AutoML (wrapped with R) in KNIME for regression problems - a powerful auto-machine-learning framework (https://hub.knime.c…
    mlauber71 > Public > automl > kn_automl_h2o_regression_r
    1
  4. Go to item
    Workflow
    Compute Local Model-agnostic Explanations (LIMEs)
    LIME Machine learning interpretability Mli
    +9
    This is an example for computing explanation using LIME. An XGBoost model was picked, but any model and its set of Learner and Pr…
    knime > Examples > 04_Analytics > 17_Machine_Learning_Interpretability > 01_Compute_LIMEs
    1
  5. Go to item
    Workflow
    Mixing Deep Learning with XGBoost
    Deep Learning Machine Learning XGBoost
    +11
    This workflow shows how to train an XGBoost based image classifier that uses a pretrained convolutional neural network to extract…
    christian.birkhold > My Sandbox > Mixing_DL_with_XGBoost
    1
  6. Go to item
    Workflow
    Housing Value Prediction using XGBoost for Regression
    XGBoost Regression Gradient boosting
    +5
    This workflow shows how the XGBoost nodes can be used for regression tasks. It also demonstrates a combination of parameter optim…
    knime > Examples > 04_Analytics > 16_XGBoost > 02_Housing_Value_Regression_with_XGBoost
    1
  7. Go to item
    Node / Predictor
    XGBoost Predictor
    Analytics Integrations XGBoost
    +1
    Applies a classification XGBoost model to predict data.
    1
  8. Go to item
    Node / Predictor
    XGBoost Predictor (Regression)
    Analytics Integrations XGBoost
    +1
    Applies a regression XGBoost model to predict data.
    1
  9. Go to item
    Workflow
    H2O.ai AutoML (generic KNIME nodes) in KNIME for classification problems - a powerful auto-machine-learning framework
    H2o Automl Knime
    +8
    H2O.ai AutoML (generic KNIME nodes) in KNIME for classification problems - a powerful auto-machine-learning framework (https://hu…
    mlauber71 > Public > automl > kn_automl_h2o_classification
    0
  10. Go to item
    Workflow
    H2O.ai AutoML (wrapped with R) with vtreat data preparation in KNIME for regression problems
    H2o Automl Knime
    +11
    H2O.ai AutoML (wrapped with R) with vtreat data preparation in KNIME for regression problems (with R vtreat) - a powerful auto-ma…
    mlauber71 > Forum > 2022 > kn_forum_39929_video_h2o_regression_r_vtreat
    0
  11. Go to item
    Workflow
    Mixing_DL_with_XGBoost
    Deep Learning Machine Learning XGBoost
    +11
    This workflow shows how to train an XGBoost based image classifier that uses a pretrained convolutional neural network to extract…
    nemad > Public > Mixing_DL_with_XGBoost
    0
  12. Go to item
    Workflow
    Model Selection with Integrated Deployment
    Chemistry Naive bayes Random forest
    +11
    This workflow deploys an advanced parameter optimzation protocol with four machine learning methods. In this implementation the c…
    knime > Education > Courses > L4-CA Machine Learning for Chemical Applications > Exercises > 02_Hyperparameter Optimization
    0
  13. Go to item
    Workflow
    Model Selection with Integrated Deployment
    Chemistry Naive bayes Random forest
    +11
    This workflow deploys an advanced parameter optimzation protocol with four machine learning methods. In this implementation the c…
    knime > Life Sciences > Events > 2020_10_Integrated_Deployment_In_Action_Webinar > Model Selection with Integrated Deployment
    0
  14. Go to item
    Workflow
    Compute Local Model-agnostic Explanations (LIMEs)
    LIME Machine learning interpretability Mli
    +9
    這是使用LIME計算說明的示例。 選擇了XGBoost模型,但是可以使用任何模型及其Learner和Predictor節點集。 -閱讀有關葡萄酒的數據集 -在訓練和測試中對數據進行分區 -選擇一些測試集實例行進行解釋 -在輸入表中為每個實例創建本地樣本(LI…
    jamestsai > Public > 01_Compute_LIMEs
    0
  15. Go to item
    Workflow
    H2O.ai AutoML (wrapped with R) in KNIME for regression problems
    H2o Automl Knime
    +8
    H2O.ai AutoML (wrapped with R) in KNIME for regression problems - a powerful auto-machine-learning framework (https://hub.knime.c…
    l20121 > Public > kn_automl_h2o_regression_r
    0
  16. Go to item
    Workflow
    H2O.ai AutoML (wrapped with R) in KNIME for classification problems
    H2o Automl Knime
    +3
    H2O.ai AutoML (wrapped with R) in KNIME for classification problems - a powerful auto-machine-learning framework https://hub.knim…
    mlauber71 > Public > kn_example_bigdata_h2o_automl_spark > s_415_h2o_automl_classification_r
    0
  17. Go to item
    Workflow
    s_618 - H2O.ai AutoML (generic KNIME nodes) in KNIME for classification problems - a powerful auto-machine-learning framework applied via Sparkling Water on a Big Data system
    H2o Automl Knime
    +10
    s_618 - H2O.ai AutoML (generic KNIME nodes) in KNIME for classification problems - a powerful auto-machine-learning framework app…
    mlauber71 > Public > kn_example_bigdata_h2o_automl_spark_46 > s_618_h2o_automl_spark
    0
  18. Go to item
    Workflow
    Model Selection with Integrated Deployment
    Chemistry Naive bayes Random forest
    +11
    This workflow deploys an advanced parameter optimzation protocol with four machine learning methods. In this implementation the c…
    janina > Public > 2022_01_KNIME_User_Day > Model Selection with Integrated Deployment
    0
  19. Go to item
    Workflow
    H2O.ai AutoML (wrapped with R community nodes) in KNIME for classification problems (with R vtreat)
    H2o Automl Knime
    +12
    H2O.ai AutoML (wrapped with R community nodes) in KNIME for classification problems (with R vtreat) - a powerful auto-machine-lea…
    mlauber71 > Forum > 2022 > kn_forum_38612_h2o_ecg_classification_r_vtreat
    0
  20. Go to item
    Workflow
    H2O.ai AutoML (wrapped with Python) with vtreat data preparation in KNIME for classification problems (with R vtreat)
    H2o Automl Knime
    +10
    H2O.ai AutoML (wrapped with Python) with vtreat data preparation in KNIME for classification problems (with R vtreat) - a powerfu…
    mlauber71 > Public > automl > kn_automl_h2o_classification_python_vtreat
    0

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits