Hub
Pricing About
WorkflowWorkflow

xgboost parameter tuning and handling large datasets

XgboostHandling large datasetsROCParameter optimizationCross-validation
+3
ashokharnal profile image
Draft Latest edits on 
Nov 5, 2019 5:43 AM
Drag & drop
Like
Download workflow
Workflow preview
This example demonstrates following: 1. Handling Large datasets in KNIME--Setting Memory Policy 2. Feature Engineering 3. ROC curves 4. XGBoost Tree Ensemble Learner for classification 4. xgboost Parameter tuning using Bayesian Optimization Data is from Kaggle--Santander Customer Transaction Prediction.

External resources

  • Kaggle--Santander Customer Classification
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.0.2
  • Go to item
    KNIME CoreTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.0.2

    knime
  • Go to item
    KNIME Optimization extensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.0.0

    knime
  • Go to item
    KNIME XGBoost IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.0.1

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits