Hub
Pricing About
NodeNode / Learner

RProp MLP Learner (deprecated)

AnalyticsMiningNeural NetworkMLP

This node has been deprecated and its use is not recommended. Please search for updated nodes instead.

Like

Implementation of the RProp algorithm for multilayer feedforward networks. RPROP performs a local adaptation of the weight-updates according to the behavior of the error function. For further details see: Riedmiller, M. Braun, H. : "A direct adaptive method for faster backpropagation learning: theRPROP algorithm",Proceedings of the IEEE International Conference on Neural Networks (ICNN) (Vol. 16, pp. 586-591). Piscataway, NJ: IEEE. This node provides a view of the error plot.
If the optional PMML inport is connected and contains preprocessing operations in the TransformationDictionary those are added to the learned model.

Node details

Input ports
  1. Type: Table
    Training Data
    Datatable with training data
  2. Type: PMML
    PMML Preprocessing
    Optional PMML port object containing preprocessing operations.
Output ports
  1. Type: PMML
    Neural Network
    RProp trained Neural Network

Extension

The RProp MLP Learner (deprecated) node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits