This node creates a document vector for each document representing it in the terms space, exactly as the normal document vector node. The difference is that this node takes two data tables as input:
1. Table containing the bag-of-words terms
2. Table containing the reference document vector
The terms from the first input will be converted into document vectors using the vector from the second input as the reference. Features that appear in first table, but not in the reference table will be filtered out, and features that appear in the reference table, but not in the first table will be added to the output vector and their values will be set to 0.
The values of the feature vectors can be specified as boolean values or as values of a specified column i.e. an tf*idf column. The dimension of the vectors will be the number of distinct terms in the BoW.
- Type: TableDocuments input tableThe input table containing the bag of words.
- Type: TableDocument vector input tableThe input reference table containing the reference document vector.