Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • knime
  • Spaces
  • Beginners Space
  • 04_Analyze
  • 03_Analyze_Clustering_location_data
WorkflowWorkflow

Analyze Data by Training a k-Means Clustering on Location Data

Cluster K-Means Algorithm Clustering Beginner
+2

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
In this workflow, we perform a Clustering task on location data where we have longitude and latitude information. We use the k-means algorithm to cluster this data and then visualize the clustering results.

External resources

  • KNIME Self Paced Course
  • KNIME Cheat Sheet : Building a KNIME Workflow for Beginners
  • Clustering - KNIME TV - YouTube
  • Training Clustering Algorithms - KNIME TV - YouTube
  • What is Clustering and How Does it Work? - KNIME Blog

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.2 Note: Not all extensions may be displayed.
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

  • Go to item
    KNIME Open Street Map Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.1

  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits