Hub
Pricing About
WorkflowWorkflow

07.02 Outlier Detection solution

Data manipulationPreprocessingOutlier detectionZ-scoreEducation
knime profile image
Draft Latest edits on 
Mar 13, 2025 8:08 PM
Drag & drop
Like
Download workflow
Workflow preview

07.02 Outlier Detection - solution

[L4-ML] Machine Learning Algorithms - Specialization

07 Data Cleaning Preparation
Detect and remove outliers in the data using the following techniques:
- Numeric outliers outside the upper/lower whiskers of a box plot
- Outliers in the distribution tails (z-score)

External resources

  • Description of the Ames Iowa Housing Data
  • Ames Housing Dataset on kaggle
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.4.0
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.4.0

    knime profile image
    knime
  • Go to item
    KNIME ExpressionsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.4.0

    knime profile image
    knime
  • Go to item
    KNIME Statistics NodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.4.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits