This example shows one way of anonymizing data. it uses the approved adults data set. For this example, distance matrix are calculated for all relevant rows then k-nearest Neighbors is used to find the "closest" by default 2 records to the original. A record to replace the original is then built by randomly choosing values from the closest neighbors. To test the anonymized data, a standard machine learning excersize is performed on the anonymized data, the original data and also by applying the anonymized model to the original data. Measures of quality are captured. Other methods of testing quality could be used. To test whether the data is truly anonymized a test is performed to attempt to trace back from the equivalent anonymized record to the original record. Other approaches for deanonymizing could be used. For further details, please refer to the white paper "Taking a proactive approach to GDPR with KNIME"
Workflow
Anonymize Personal Data
External resources
Used extensions & nodes
Created with KNIME Analytics Platform version 4.0.2
Legal
By using or downloading the workflow, you agree to our terms and conditions.