Hub
Pricing About
WorkflowWorkflow

05_Cohen's_Kappa_for_Evaluating_Classification_Models

Model evaluationResamplingCohen's kappaOverall accuracyBootstrap
+2
knime profile image
Versionv1.0Latest, created on 
Oct 20, 2023 2:07 PM
Drag & drop
Like
Download workflow
Workflow preview
This workflow demonstrates how Cohen's kappa can be used to evaluate the performance of a classification model when dealing with imbalanced data. We also show how Cohen's kappa obtains greater values not only due to better model performance, but also because of a more balanced target class distribution.

External resources

  • Cohen's Kappa: Learn It, Use It, Judge It
  • Scoring Metrics eBook
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.1.0
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime profile image
    knime
  • Go to item
    KNIME JavaScript Views (Labs)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime profile image
    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime profile image
    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime profile image
    knime
  • Go to item
    KNIME ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.1.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits