Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
Sign in
  • KNIME Hub
  • knime
  • Spaces
  • Examples
  • 04_Analytics
  • 14_Deep_Learning
  • 01_DL4J
  • 09_Simple_Anomaly_Detection_Using_A_Convolutional_Net
WorkflowWorkflow

Simple Anomaly Detection Using a Convolutional Network

deeplearning machine learning anomaly detection neural networks convolutional

Last update: 

Drag Workflow
Workflow preview
This workflow shows how to do anomaly detection of the MNIST dataset using a convolutional network. Workflow Requirements KNIME Analytics Platform 3.2.0 KNIME Deeplearning4J Integration KNIME Deeplearning4J Integration Image Processing Extension

External resources

  • KNIME Deeplearning4J Integration

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • KNIME Core Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • KNIME Deeplearning4J Integration (64bit only) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • KNIME Image Processing Trusted extension

    University of Konstanz / KNIME

    Version 1.8.1

Legal

By downloading the workflow, you agree to our terms and conditions.

License (CC-BY-4.0)
Short link
Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2021 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits