Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • knime
  • Spaces
  • Examples
  • 04_Analytics
  • 14_Deep_Learning
  • 01_DL4J
  • 09_Simple_Anomaly_Detection_Using_A_Convolutional_Net
WorkflowWorkflow

Simple Anomaly Detection Using a Convolutional Network

Deeplearning Machine learning Anomaly detection Neural networks Convolutional

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
This workflow shows how to do anomaly detection of the MNIST dataset using a convolutional network. Workflow Requirements KNIME Analytics Platform 3.2.0 KNIME Deeplearning4J Integration KNIME Deeplearning4J Integration Image Processing Extension

External resources

  • KNIME Deeplearning4J Integration

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • Go to item
    KNIME Core Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    KNIME Deeplearning4J Integration (64bit only) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    KNIME Image Processing Trusted extension

    University of Konstanz / KNIME

    Version 1.8.1

  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits