Hub
Pricing About
WorkflowWorkflow

Simple Anomaly Detection Using a Convolutional Network

DeeplearningMachine learningAnomaly detectionNeural networksConvolutional
knime profile image
Draft Latest edits on 
May 18, 2016 11:12 AM
Drag & drop
Like
Download workflow
Workflow preview
This workflow shows how to do anomaly detection of the MNIST dataset using a convolutional network. Workflow Requirements KNIME Analytics Platform 3.2.0 KNIME Deeplearning4J Integration KNIME Deeplearning4J Integration Image Processing Extension

External resources

  • KNIME Deeplearning4J Integration
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • Go to item
    KNIME CoreTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime
  • Go to item
    KNIME Deeplearning4J Integration (64bit only)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime
  • Go to item
    KNIME Image ProcessingTrusted extension

    University of Konstanz / KNIME

    Version 1.8.1

    bioml-konstanz

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits