Hub
Pricing About
WorkflowWorkflow

H2O Generalized Linear Model for regression

H2OGeneralized Linear ModelMachine learningGlm
knime profile image
Draft Latest edits on 
Jul 10, 2017 8:00 AM
Drag & drop
Like
Download workflow
Workflow preview
This example shows how to build an H2O GLM model for regression, predict new data and score the regression metrics for model evaluation. 1. Prepare: Load the carspeed data, import the resulting KNIME Table to H2O and partition the data for test and train set 30/70. 2. Learn: We learn the GBMGLM Model using the "H2O Generalized Linear Model Learner (Regression) using the default algorithm settings. 3. Predict: Make predictions on test data using the model. 4. Score: In order to evaluate our model, we asess the accuracy by scoring the predictions made on the test data.

External resources

  • H2O GLM documentation
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • Go to item
    KNIME CoreTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime
  • Go to item
    KNIME H2O Machine Learning IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits