Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
Sign in
  • KNIME Hub
  • knime
  • Spaces
  • Examples
  • 04_Analytics
  • 15_H2O_Machine_Learning
  • 03_H2O_GLM_Regression_Model
WorkflowWorkflow

H2O Generalized Linear Model for regression

H2O Generalized Linear Model machine learning glm

Last edited: 

Drag Workflow
Workflow preview
This example shows how to build an H2O GLM model for regression, predict new data and score the regression metrics for model evaluation. 1. Prepare: Load the carspeed data, import the resulting KNIME Table to H2O and partition the data for test and train set 30/70. 2. Learn: We learn the GBMGLM Model using the "H2O Generalized Linear Model Learner (Regression) using the default algorithm settings. 3. Predict: Make predictions on test data using the model. 4. Score: In order to evaluate our model, we asess the accuracy by scoring the predictions made on the test data.

External resources

  • H2O GLM documentation

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • KNIME Core Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • KNIME H2O Machine Learning Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

Legal

By downloading the workflow, you agree to our terms and conditions.

License (CC-BY-4.0)
Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2021 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits