Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • knime
  • Spaces
  • Examples
  • 04_Analytics
  • 15_H2O_Machine_Learning
  • 06_H2O_GBM_parameter_optimization
WorkflowWorkflow

H2O Parameter Optimization

H2O Machine learning Parameter optimization Grid search
KNIME profile image

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
This tutorial shows how to train multiple H2O Models in KNIME using parameter optimization (grid search) and extract the optimal algorithm settings for the training of the final model. We will train Gradient Boosting Machines for binominal classification using a grid of two different GBM parameters. 1. Prepare: Load and Import data to H2O. 2. Optimization: To train models with parameter optimization, we create a Loop using the KNIME Node "Parameter Optimization Loop Start" (Analytics - Mining). In this Nodes' settings we can define the optimization grid: For this example we will optimize the GBM algorithm parameters "Number of trees" and "Max tree depth". We use brute force optimization, meaning that there will be as many iteration as there are parameter combinations defined in the Parameter Optimization Loop Start Node. The "Loop End" Node collects the scored metrics of all optimization loop iterations. In order to extract the optimal algorithm parameters, we sort the collected rows by several metrics and filter the top row. 3. Learn Models, do prediction and scoring in Parameter Optimization Loop: For each combination of parameters, a GBM Model is build by H2O using the "Number of Trees" and "Max tree depth" parameters of the corresponding loop iteration and the model accuracy metrics are scored. 4. Train final model Finally, we use the optimal parameters to predict new data.

External resources

  • H2O documentation

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • Go to item
    KNIME Core Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    KNIME profile image
    knime
  • Go to item
    KNIME H2O Machine Learning Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    KNIME profile image
    knime
  • Go to item
    KNIME Optimization extension Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    KNIME profile image
    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item
Loading deployments
Loading ad hoc executions

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits