Hub
Pricing About
WorkflowWorkflow

Housing Value Prediction using XGBoost for Regression

XGBoostRegressionGradient boostingGradient boosted treesParameter optimization
+3
knime profile image
Draft Latest edits on 
Dec 5, 2018 9:15 AM
Drag & drop
Like
Download workflow
Workflow preview
This workflow shows how the XGBoost nodes can be used for regression tasks. It also demonstrates a combination of parameter optimization with cross validation to find the optimal value for the number of boosting rounds.

External resources

  • Data
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • Go to item
    KNIME CoreTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime
  • Go to item
    KNIME Optimization extensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime
  • Go to item
    KNIME XGBoost IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime profile image
    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits