Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • knime
  • Spaces
  • Examples
  • 04_Analytics
  • 16_XGBoost
  • 02_Housing_Value_Regression_with_XGBoost
WorkflowWorkflow

Housing Value Prediction using XGBoost for Regression

XGBoost Regression Gradient boosting Gradient boosted trees Parameter optimization
+3

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
This workflow shows how the XGBoost nodes can be used for regression tasks. It also demonstrates a combination of parameter optimization with cross validation to find the optimal value for the number of boosting rounds.

External resources

  • Data

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.0
  • Go to item
    KNIME Core Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    KNIME Optimization extension Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  • Go to item
    KNIME XGBoost Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits