Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • knime
  • Spaces
  • Parameter Optimization Space
  • 01_Classification
  • 01_Parameter_Optimization_with_Nodes
  • 02_Parameter_Optimization_Loop_on_Logistic_Regression
WorkflowWorkflow

Parameter Optimization Loop on Logistic Regression Classification

Parameter optimization Optimization Machine learning Onboarding Data Science
KNIME profile image

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
This workflow shows an example of parameter optimization in a logistic regression model. In the logistic regression we optimize step size in (0,1] step =0.1 and variance in (0, 5] step = 0.1 The different parameters are output as flow variables by the Parameter Optimization Loop Start node. The parameter settings of the logistic regression algorithm are overwritten by the flow variables and trees with different settings are trained. Since this is a binary classification we can use the ROC Curve node and create a flow variable with the AUC in each iteration. This is then fed into the Parameter Optimization Loop End node. The end node compares the accuracies and supplies the best value in the first output. We use "Hill Climbing Strategy".

External resources

  • Parameter Optimization Video - KNIME TV - YouTube
  • ML Algorithms and the Art of Parameter Selection - KNIME Blog

Used extensions & nodes

Created with KNIME Analytics Platform version 4.5.2
  • Go to item
    KNIME Base nodes Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.2

    KNIME profile image
    knime
  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.2

    KNIME profile image
    knime
  • Go to item
    KNIME Optimization extension Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.5.0

    KNIME profile image
    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item
Loading deployments
Loading ad hoc executions

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits