Hub
Pricing About
ComponentComponent

Interactive Column Filter (Simple)

paolotamag profile image
VersionlatestLatest, created on 
Oct 24, 2023 2:50 PM
Drag & drop
Like
Use or download
This Component creates an interactive view to filter and select columns for your model based on the relevance of the columns to the ground truth specified. It also captures the user specified columns by means of integrated deployment. SET COLUMN RELEVANCE FILTER Column Relevance is an overall metric summarizing the metrics belows. Use the slider to select the input features based on their Overall Column Relevance. The additional metrics calculated automatically and used to determine Overall Column Relevance include: - ID/Noise Test: measures how likely the column is a representation used to identify each row in your table. Row identifiers are uninformative for your model and should be removed. - Constant Value: Test measures how often the column contains the exact same value. Columns with just a constant value also carry no information. You should avoid using them. - Missing Value Test: measures the percentage of missing values in a column over the entire dataset. You should remove features with a percentage of missing values too high. By using the slider, columns can be excluded from model training based on their column relevance. Furthermore you can use the linear correlation between each column and the column to predict to refine your input set. - Correlation with Target: measures the linear correlation with the column the model will predict: Income. It is important to keep in mind if a feature is highly or poorly correlated. If you have high correlation (close to + or - 100%) this will help the model to achieve a good performance, unless the column has too many unique values (e.g. an high ID/Noise Test). If instead you have low correlation (close to 0%), you might exclude the feature in exchange for a faster training of the model. Be aware that very highly correlated columns can also be the result of the target column. MANUALLY SELECT COLUMNS You can use the Column Relevance Filter - but you don't have to. Alternatively, you can remove individual columns manually in the Data Explorer table in the lower part of this page. This table allows you to explore both numeric and nominal columns. Clicking on a column name will provide additional information about the data in that column, for example statistics and histogram showing their distribution. Remember that the final set of columns to be excluded will be the unique set produced by both the Column Relevance Filter and the Manually Select Columns.

Component details

Input ports
  1. Type: Table
    Input Data
    Data with input feature columns and ground truth for your model.
Output ports
  1. Type: Table
    Filtered Data
    Data interactively filtered by the user.

Used extensions & nodes

Created with KNIME Analytics Platform version 4.2.3
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.3

    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.3

    knime
  • Go to item
    KNIME JavaScript Views (Labs)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.2

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.0

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.2

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.3

    knime
  • Go to item
    KNIME Statistics NodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.2.0

    knime

This component does not have nodes, extensions, nested components and related workflows

Legal

By using or downloading the component, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits