Hub
Pricing About
WorkflowWorkflow

JKISeason3-23

@obito_od#Zassou.syk#KD勉強会JKISeason3-23
tyousuke profile image
VersionV1.0.0Latest, created on 
Oct 20, 2024 1:51 PM
Drag & drop
Like
Download workflow
Workflow preview

Generating Synthetic Population Attributes

Challenge 23


Level: Easy to Medium

Description: You are a social scientist who needs to create some synthetic data for an imaginary population consisting of 1000 people, including attributes age, height, and weight. Start by generating a Gaussian age distribution using a mean of 40 and a standard deviation of 10, then bin people into four age groups: 'Children', 'Young Adults', 'Adults', and 'Seniors’. For each group, generate heights using a beta distribution with realistic parameters. Categorize heights into three groups: ‘< 160cm', ‘> 180', and 'rest’. Based on the binned height information, generate weights using a gamma distribution that accurately models weight distributions per age group. Visualize the relationships and identify patterns and correlations within this synthetic population.

説明 あなたは社会科学者で、年齢、身長、体重などの属性を含む、1000人からなる架空の集団の合成データを作成する必要があります。 まず、平均を40、標準偏差を10としてガウス年齢分布を作成し、人々を4つの年齢グループ(「子供」、「若者」、「大人」、「高齢者」)に分けます。 各グループについて、現実的なパラメータを持つベータ分布を使って身長を生成します。 身長を「160cm未満」、「180cm以上」、「それ以外」の3つのグループに分類する。 ビニングされた身長情報に基づいて、年齢グループごとの体重分布を正確にモデル化するガンマ分布を使って体重を生成する。 関係を視覚化し、この合成集団内のパターンと相関関係を特定する。

Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.3.2
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.2

    knime
  • Go to item
    KNIME Data GenerationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME JavasnippetTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.0

    knime
  • Go to item
    KNIME ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.3.2

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits