Hub
Pricing About
NodeNode / Manipulator

Connected Component Analysis

Community NodesKNIME Image ProcessingLabelingStreamable
Drag & drop
Like

Identifies connected components in an image.

Connected component labeling (alternatively connected component analysis) is an algorithmic application of graph theory, where subsets of connected components are uniquely labeled. Connected component labeling is used in computer vision to detect connected regions in binary digital images.

A graph, containing vertices and connecting edges, is constructed from relevant input data. The vertices contain information required by the comparison heuristic, while the edges indicate connected 'neighbors'. An algorithm traverses the graph, labeling the vertices based on the connectivity and relative values of their neighbors. Connectivity is determined by the medium; image graphs, for example, can be 4-connected or 8-connected.

Copied from wikipedia [1] [2]

Node details

Input ports
  1. Type: Table
    Images
    Images
Output ports
  1. Type: Table
    Segments
    Labeled segments

Extension

The Connected Component Analysis node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits