Hub
Pricing About
WorkflowWorkflow

6.1 Practical Machine Learning with R Tuning k-Nearest Neighbors (Wine Data)

Cross-ValidationHyper-ParametersParameter OptimizationEducationTuning
carstenlange profile image
Version0.0.1Latest, created on 
Mar 4, 2024 6:31 AM
Drag & drop
Like
Download workflow
Workflow preview
This workflow shows how to tune a k-Nearest Neighbors model to find the "best" value for the parameter k. The workflow uses cross-validation to asses different hyper parameter values.

External resources

  • Contact the author
  • Open the related R analysis in RStudio
  • Practical Machine Learning with R
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 5.2.1
  • Go to item
    KNIME Base nodesTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.1

    knime
  • Go to item
    KNIME Optimization extensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 5.2.0

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits