Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • jamestsai
  • Spaces
  • Public
  • 01_Compute_LIMEs
WorkflowWorkflow

Compute Local Model-agnostic Explanations (LIMEs)

LIME Machine learning interpretability Mli Explanation Instance-level explanation
+7
James Tsai profile image

Last edited: 

Drag & drop
Like
Download workflow
Copy short link
Workflow preview
這是使用LIME計算說明的示例。 選擇了XGBoost模型,但是可以使用任何模型及其Learner和Predictor節點集。 -閱讀有關葡萄酒的數據集 -在訓練和測試中對數據進行分區 -選擇一些測試集實例行進行解釋 -在輸入表中為每個實例創建本地樣本(LIME Loop Start) -使用預測變量節點和訓練有素的模型對樣本進行評分 -計算LIME,即通過使用樣本訓練局部GLM並提取權重來進行局部模型不可知的解釋。 -在組合視圖中可視化它們(右鍵單擊>打開視圖)

External resources

  • LIME - Local Interpretable Model-Agnostic Explanations, Marco Tulio Ribeiro, Blog Post
  • Data Source: UCI - Wine Quality Data Set

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.3
  • Go to item
    KNIME Core Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.3

    knime
  • Go to item
    KNIME Data Generation Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime
  • Go to item
    KNIME H2O Machine Learning Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.1

    knime
  • Go to item
    KNIME JavaScript Views Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.2

    knime
  • Go to item
    KNIME Machine Learning Interpretability Extension Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime
  • Go to item
    KNIME Math Expression (JEP) Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime
  • Go to item
    KNIME Plotly Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.3

    knime
  • Go to item
    KNIME Quick Forms Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.3

    knime
  • Go to item
    KNIME XGBoost Integration Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item
Loading deployments
Loading ad hoc executions

Legal

By using or downloading the workflow, you agree to our terms and conditions.

Discussion
Discussions are currently not available, please try again later.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits