Hub
Pricing About
WorkflowWorkflow

Model Interpretability, Titanic

TitanicRandom ForestML InterpretabilityInteractive ViewLIME
+4
J
Draft Latest edits on 
Jun 20, 2019 6:53 PM
Drag & drop
Like
Download workflow
Workflow preview
The workflow demonstrates how to use SHAP, Shapley Values and LIME implemenatations in KNIME 4.0 and generates a basic combined view. It trains a Random Forest model for predicting survival of the Titanic dataset and compute explanations using those three different techniques. The general steps demonstrated in this workflow are to: 1) Clean the data 2) Train the model 3) Take a sample row to explain 4) Run SHAP, Shapley Values and LIME 5) Combine the results in an interactive composite view.

External resources

  • Christoph Molnar - Interpretable Machine Learning - A Guide for Making Black Box Models Explainable - 5.10 SHAP (SHapley Additive exPlanations)
  • Christoph Molnar - Interpretable Machine Learning - A Guide for Making Black Box Models Explainable - 5.9 Shapley Values
  • Christoph Molnar - Interpretable Machine Learning - A Guide for Making Black Box Models Explainable - 5.7 Local Surrogate (LIME)
Loading deploymentsLoading ad hoc jobs

Used extensions & nodes

Created with KNIME Analytics Platform version 4.1.1
  • Go to item
    KNIME CoreTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.1

    knime
  • Go to item
    KNIME H2O Machine Learning IntegrationTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.1

    knime
  • Go to item
    KNIME JavaScript ViewsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime
  • Go to item
    KNIME Machine Learning Interpretability ExtensionTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime
  • Go to item
    KNIME Math Expression (JEP)Trusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.0

    knime
  • Go to item
    KNIME Quick FormsTrusted extension

    KNIME AG, Zurich, Switzerland

    Version 4.1.1

    knime

Legal

By using or downloading the workflow, you agree to our terms and conditions.

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits