Hub
Pricing About
NodeNode / Manipulator

Entropy Uncertainty Scorer

KNIME LabsActive LearningScoreUncertaintyStreamable
Drag & drop
Like

Calculates the entropy uncertainty score of a class probability distribution. Input are rows containing class probabilities P = p1, p2, ..., pn that must sum up to 1. Output will be the normalized Shannon entropy . This is defined by E(P) = H(P) / log(n) with H(P) = - sum(p_i*log(p_i) for each i in 1,...,n. The logarithm with base 2 is used. The normalization leads always to values between 0 and 1. A uniform probability distribution (i.e., most uncertain as all probabilities are equal to each other) has an entropy value of 1. If one of the class probabilities is 1 and the others 0, the highest certainty is given and the entropy value will be 0.

Node details

Input ports
  1. Type: Table
    Class Probabilities
    Table containing two or more columns containing class probabilities that sum up to 1.
Output ports
  1. Type: Table
    Input Data with Uncertainty Score
    Input data with an appended column that contains the uncertainty score.

Extension

The Entropy Uncertainty Scorer node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits