Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Nodes
  • RProp MLP Learner
NodeNode / Learner

RProp MLP Learner

Analytics Mining Neural Network MLP
Drag & drop
Like
Copy short link

Implementation of the RProp algorithm for multilayer feedforward networks. RPROP performs a local adaptation of the weight-updates according to the behavior of the error function. For further details see: Riedmiller, M. Braun, H. : "A direct adaptive method for faster backpropagation learning: theRPROP algorithm",Proceedings of the IEEE International Conference on Neural Networks (ICNN) (Vol. 16, pp. 586-591). Piscataway, NJ: IEEE. This node provides a view of the error plot.

Node details

Input ports
  1. Type: Table
    Training Data
    Datatable with training data
Output ports
  1. Type: PMML
    Neural Network
    RProp trained Neural Network

Extension

The RProp MLP Learner node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits