Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Nodes
  • Numeric Scorer
NodeNode / Other

Numeric Scorer

Analytics Mining Scoring
Drag & drop
Like
Copy short link

This node computes certain statistics between the a numeric column's values (r i ) and predicted (p i ) values. It computes R² =1-SS res /SS tot =1-Σ(p i -r i )²/Σ(r i -1/n*Σr i )² (can be negative!), Mean absolute error (1/n*Σ|p i -r i |), Mean squared error (1/n*Σ(p i -r i )²), Root mean squared error (sqrt(1/n*Σ(p i -r i )²)), Mean signed difference (1/n*Σ(p i -r i )), Mean absolute percentage error 1/n * Σ((|r i - p i |)/ |r i |), Adjusted R² =1-(1-R²)(n-1)/(n-p-1) (can be negative!). The computed values can be inspected in the node's view and/or further processed using the output table.

Node details

Input ports
  1. Type: Table
    Table
    Table with predicted and reference numerical data
Output ports
  1. Type: Table
    Statistics
    The computed statistical measures:
    • R² - coefficient of determination , 1-SS_res/SS_tot
    • Mean squared error - 1/n*Σ((p_i-r_i)²)
    • Mean absolute error - 1/n*Σ|p_i-r_i|
    • Root mean squared error - Sqrt(1/n*Σ((p_i-r_i)²))
    • Mean signed difference - 1/n*Σ(p_i - r_i)
    • Mean absolute percentage error 1/n * Σ((|r_i - p_i|)/|r_i|)
    • Adjusted R² 1-(1-R²)(n-1)/(n-p-1)

Extension

The Numeric Scorer node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    Numeric_Scorer
    GIDS Exercise Academia
    +2
    Numeric scorer: compare performance of two regression models
    knime > Academic Alliance > Guide to Intelligent Data Science > Exercises > Chapter5_Principles_of_Modeling > Numeric_Scorer_Solution
  2. Go to item
    Numeric Error Measures to score numeric predictions
    Simple Regression Tree TheGuideBook Score
    +11
    Using the Iris flower dataset, a Linear Regression is trained to predictpetal width. The …
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter5 > 02_NumericScorer_Partition
  3. Go to item
    21_Regression_Model_Evaluation - Solution
    E-learning Model evaluation R-squared
    +2
    Solution to an e-learning course exercise. Evaluate the performance of a regression model
    stervis > Public > E-Learning > L1-DS KNIME Analytics Platform for Data Scientists - Basics > Solutions > 21_Regression_Model_Evaluation - Solution
  4. Go to item
    Innovation-Test
    livinc > Public > Innovation-Test
  5. Go to item
    21_Regression_Model_Evaluation - Solution
    E-learning Model evaluation R-squared
    +2
    Solution to an e-learning course exercise. Evaluate the performance of a regression model
    a2620 > Public > L1-DS KNIME Analytics Platform for Data Scientists - Basics > Solutions > 21_Regression_Model_Evaluation - Solution
  6. Go to item
    21_Regression_Model_Evaluation - Solution
    E-learning Model evaluation R-squared
    +2
    Solution to an e-learning course exercise. Evaluate the performance of a regression model
    mavalenciaor > Public > L1-DS KNIME Analytics Platform for Data Scientists - Basics > Solutions > 21_Regression_Model_Evaluation - Solution
  7. Go to item
    7
    lina3 > Public > Lab 4 > 7
  8. Go to item
    Exercise_5_LinearRegression
    mig > Public > Exercise_5 > Exercise_5_LinearRegression
  9. Go to item
    Exercise_5_RegressionTree
    mig > Public > Exercise_5 > Exercise_5_RegressionTree
  10. Go to item
    Lab3.6
    doctorbrunson > Lab3.6 > Lab3.6

No known nodes available

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits