Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Nodes
  • PCA Compute
NodeNode / Manipulator

PCA Compute

Analytics Mining PCA
Drag & drop
Like
Copy short link

This node performs a principal component analysis (PCA) on the given input data. The directions of maximal variance (the principal components) are extracted and can be used in the PCA Apply node to project the input into a space of lower dimension while preserving a maximum of information.

Node details

Input ports
  1. Type: Table
    Table to transform
    Input data for the PCA
Output ports
  1. Type: Table
    Covariance matrix
    Covariance matrix of the input columns
  2. Type: Table
    Spectral decomposition
    Table containing parameters extracted from the PCA. Each row in the table represents one principal component, whereby the rows are sorted with decreasing eigenvalues, i.e. variance along the corresponding principal axis. The first column in the table contains the component's eigenvalue, a high value indicates a high variance (or in other words, the respective component dominates the orientation of the input data).
    Each subsequent column (labeled with the name of the selected input column) contains a coefficient representing the influence of the respective input dimension to the principal component. The higher the absolute value, the higher the influence of the input dimension on the principal component.
    The mapping of the input rows to, e.g. the first principal axis, is computed as follows (all done in the PCA Apply node): For each dimension in the original space subtract the dimension's mean value and then multiply the resulting vector with the vector given by this table (the first row in the spectral decomposition table to get the value on the first PC, the second row for the second PC and so on).
  3. Type: Transformation
    Transformation model
    Model holding the PCA transformation used by the PCA Apply node to apply the transformation to, e.g. another validation set.

Extension

The PCA Compute node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    Spectra_analysis-PCA
    dariatomb > Public > Spectra_analysis-PCA
  2. Go to item
    3D QSAR (MOE Extensions)
    3D-QSAR QSAR MOE
    +1
    Example Workflow demonstrating how to run a ComFA like QSAR Model in KNIME using the MOE …
    guido_kirsten > Public > 3D QSAR (MOE Extensions) > 3D QSAR (MOE Extensions)
  3. Go to item
    Dimensionality Reduction
    Dimensionality reduction Data manipulation Preprocessing
    +3
    Introduction to Machine Learning Algorithms course - Session 4 Solution to exercise 4 App…
    hayasaka > L4-ML-2Hrs-2021-07 > Solutions > 07_Dimensionality_Reduction_solution
  4. Go to item
    NIR Spectral Data Analysis - Visualisation, PCA analysis and Clustering
    Lab data NIR spectroscopy Spectroscopy
    +1
    This workflow takes preprocessed spectral data of multiple samples as an input and: 1. cr…
    knime > Life Sciences > Laboratory Data > NIR_Spectral_Data_Analysis > 02_NIR_Spectral_Data_Analysis_Clustering_and_Visualization
  5. Go to item
    NIR Spectral Data Analysis - Visualisation, PCA analysis and Clustering
    Lab data NIR spectroscopy Spectroscopy
    +1
    This workflow takes preprocessed spectral data of multiple samples as an input and: 1. cr…
    medchem30 > Public > 02_NIR_Spectral_Data_Analysis_Clustering_and_Visualization
  6. Go to item
    Kernel Principal Component Analysis
    KPCA Dimensionality reduction
    This workflow performs a kernel principal component analysis (PCA) on the given data, usi…
    mauuuuu5 > Public > KPCA
  7. Go to item
    SpectralDecomposition
    Determines the number of components in a graph and assign the nodes to the components the…
    bojacobs > Public > SpectralDecomposition
  8. Go to item
    Dimensionality Reduction
    Dimensionality reduction Data manipulation Preprocessing
    +3
    Introduction to Machine Learning Algorithms course - Session 4 Solution to exercise 4 App…
    knime > Education > Courses > L4-ML Introduction to Machine Learning Algorithms > Session_4 > 02_Solutions > 04_Dimensionality_Reduction_solution
  9. Go to item
    33319
    stelfrich > Forum > 33319
  10. Go to item
    Sarcasm Detected with Machine Learning
    Redfield BERT Sarcasm
    +3
    In this workflow we are using BERT embeddings to detect sarcasm in texts. Other cases for…
    redfield > Public > Sarcasm_detection_with_BERT_by_Redfield

No known nodes available

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits