Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Nodes
  • Auto-Binner (Apply)
NodeNode / Manipulator

Auto-Binner (Apply)

Manipulation Column Binning Streamable
Drag & drop
Like
Copy short link

This node allows to group numeric data in intervals - called bins. The bins are defined in the PMML Model.

This node is typically used when test data shall be binned the same way the training data has been binned (using the "Auto-Binner" node).

Node details

Input ports
  1. Type: PMML Preprocessing
    PMML Processing Fragment
    The PMML Model fragment containing information how to bin
  2. Type: Table
    Input Data
    Data to be categorized
Output ports
  1. Type: Table
    Binned Data
    Data with bins defined

Extension

The Auto-Binner (Apply) node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    combine_doubles_columns
    lukass > Forum > combine_doubles_columns
    lukass
  2. Go to item
    Handling sparse categorial variables with Word2Vec
    Encoding Sparse data Embedding
    +3
    This workflow shows how to compute word embedding on a set of categorical variables with …
    francescots > Public > Natural Language Processing > Examples > Categorical Variables Encoding with word2vec
    francescots
  3. Go to item
    KNIME_project2
    pabloj121 > Public > KNIME_project2
    pabloj121
  4. Go to item
    Handling sparse categorial variables with Word2Vec
    Encoding Sparse data Embedding
    +3
    This workflow shows how to compute word embedding on a set of categorical variables with …
    francescots > Public > Statistics > Examples > Variables Encoding with word2vec
    francescots
  5. Go to item
    Bioactivity Prediction using ML
    The objective of this workflow is to predict the biological activity of molecules related…
    deepsika > Public > Bioactivity prediction 18081
    deepsika
  6. Go to item
    ML Prototyping for Bioactivity Data
    Cheminformatics Webportal Data Visualization
    +7
    This workflow demonstrates model building for a bioactivity data set with several machine…
    knime > Life Sciences > Events > 2021_03_03_Cheminformatics_with_KNIME_Webinar > ML Prototyping for Bioactivity Data
    knime
  7. Go to item
    ML Prototyping for Bioactivity Data
    Cheminformatics Webportal Data Visualization
    +7
    This workflow demonstrates model building for a bioactivity data set with several machine…
    urbanl > Public > ML Prototyping for Bioactivity Data
    urbanl
  8. Go to item
    03_Bioactivity_Prediction_Learn_Testing
    Parameter optimization loop Machine learning
    This workflow is used for learning the model. It deploys a simple version of parameter op…
    knime > Examples > 50_Applications > 37_Monster_Model_Factory > Process > _Process_Step_Templates > workflows > Templates > 03_Bioactivity_Prediction_Learn_Testing
    knime
  9. Go to item
    Model Optimization and Selection
    This workflow deploys an advanced parameter optimzation protocol with four machine learni…
    knime > Examples > 04_Analytics > 11_Optimization > 08_Model_Optimization_and_Selection
    knime
  10. Go to item
    03_Bioactivity_Prediction_Learn_All_Methods
    This workflow is used for learning the model. It deploys a complex parameter optimzation …
    knime > Examples > 50_Applications > 37_Monster_Model_Factory > Process > _Process_Step_Templates > workflows > Templates > 03_Bioactivity_Prediction_Learn_All_Methods
    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits