Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Nodes
  • One to Many
NodeNode / Manipulator

One to Many

Manipulation Column Transform
Drag & drop
Like
Copy short link

Transforms all possible values in a selected column each into a new column. The value is set as the new column's name, the cell values in that column are either 1, if that row contains this possible value, or 0 if not.
The node appends as many columns as possible values are defined for the selected column(s).
If a row contains a missing value in a selected column all corresponding new columns contain the value 0.
To avoid duplicate column names with identical possible values in different selected columns, the generated column name includes the original column name in this case (i. e. the name looks like possibleValue_originalColumnName).
The dialog of the node allows you only to select columns with nominal values. If no column name appears in the dialog but your input table contains nominal columns, you could use the DomainCalculator node and connect its output to this node.

Node details

Input ports
  1. Type: Table
    Data to process
    Data
Output ports
  1. Type: Table
    Processed data
    Data with transformed columns

Extension

The One to Many node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    Asst 3 Q6
    petersonsm99 > ITSCM 774 Team 1 > Assignment 3 > Asst 3 Q6
  2. Go to item
    Unpivot and Split
    tommy > Public > Unpivot and Split
  3. Go to item
    Just Knime it-028
    anilks > Just Knime It Challenges > Just Knime It Challenge > Just Knime it-028
  4. Go to item
    KNIME_project2
    anurag > Public > KNIME_project2
  5. Go to item
    preparacion de datos
    yaguar > Public > IA 101 - Introduccion a la inteligencia artificial (redes neuronales) > preparacion de datos
  6. Go to item
    Train a MLP
    Deep learning TensorFlow
    This workflow uses the TensorFlow Python bindings to create and train a multilayer percep…
    knime > Examples > 04_Analytics > 14_Deep_Learning > 03_TensorFlow > 02_Training_Tensorflow_MLP
  7. Go to item
    Train a simple Multilayer Perceptron using TensorFlow 2
    TensorFlow 2 Deep Learning Tf
    +3
    This workflow shows how to train a simple multilayer perceptron for classification. It is…
    knime > Examples > 04_Analytics > 14_Deep_Learning > 04_TensorFlow2 > 04_Train_a_MLP
  8. Go to item
    KNIME_project
    manish7273 > Public > KNIME_project
  9. Go to item
    Solution 7 Practicing with Data Preprocessing Techniques
    Education L4-ML
    This workflow shows a solution to a hands-on exercise in the L4-ML Introduction to Machin…
    knime > Education > Self-Paced Courses > L4-ML Introduction to Machine Learning Algorithms > Solutions > Solution 7 Practicing with Data Preprocessing Techniques
  10. Go to item
    Group Assignment 5
    petersonsm99 > ITSCM 774 Team 1 > Group Assignment 5
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits