Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Nodes
  • Normalizer (Apply)
NodeNode / Manipulator

Normalizer (Apply)

Manipulation Column Transform Streamable
Drag & drop
Like
Copy short link

This node normalizes the input data according to the normalization parameters as given in the model input (typically coming from the Normalizer node). It will apply an affine transformation to all columns in the input data that are contained in the model input.

This node is typically used when test data shall be normalized the same way the training data has been normalized (using the "Normalizer" node).

Node details

Input ports
  1. Type: Normalizer
    Model
    Normalization parameters
  2. Type: Table
    Table to normalize
    Table requiring normalization of some or all columns.
Output ports
  1. Type: Table
    Normalized output
    The input data normalized according to the normalization parameters.

Extension

The Normalizer (Apply) node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    Classification of the iris data using kNN
    TheGuideBook KNN K Nearest Neighbor
    +2
    This workflow solves a classification problem on the iris dataset using the k-Nearest Nei…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter9 > 01_kNN
    knime
  2. Go to item
    Classification of the iris data using kNN
    TheGuideBook KNN K Nearest Neighbor
    +2
    This workflow solves a classification problem on the iris dataset using the k-Nearest Nei…
    vgironda > Public > 01_kNN
    vgironda
  3. Go to item
    einkommen
    jallmer > Public > DMML > einkommen
    jallmer
  4. Go to item
    Keras Autoencoder for Fraud Detection Deployment
    Autoencoder Keras Neural network
    +16
    Read Keras model. Read deployment data, which are normalized into range [0,1]. Apply the …
    knime > Examples > 50_Applications > 39_Fraud_Detection > 04_Keras_Autoencoder_for_Fraud_Detection_Deployment
    knime
  5. Go to item
    SVM on iris dataset
    TheGuideBook SVM Classification
    +2
    This workflow solves a classification problem on the iris dataset using Support Vector Ma…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter9 > 03_SVM
    knime
  6. Go to item
    SVM on iris dataset
    TheGuideBook SVM Classification
    +2
    This workflow solves a classification problem on the iris dataset using Support Vector Ma…
    jessi > Public > 03_SVM
    jessi
  7. Go to item
    Classification of the iris data using kNN from Jupyter
    KNN K Nearest Neighbor Classification
    +1
    This workflow demonstrate modification needed for a workflow to be called externally, suc…
    sphynxhenry > Public > jupyter_kNN
    sphynxhenry
  8. Go to item
    kNN iris
    ADILT22 > Course Material - Codefree Introduction to Data Science > VL6 - Classification > Workflows > kNN iris
    ADILT22
  9. Go to item
    Keras Autoencoder for Fraud Detection - Training
    Autoencoder Keras Neural network
    +13
    Exercise of the L4-DL Introduction to Deep Learning Course. The goal of this exercise is …
    knime > Education > Courses > L4-DL Introduction to Deep Learning > Session2 > Exercises > 01_Fraud_Detection_Training_Exercise
    knime
  10. Go to item
    KBL: Data Preparation for Classification
    KNIMEPress Education Missing value
    +3
    Examples of common data preparation methods for machine learning, including missing value…
    hayasaka > Public > KNIMEPress > KNIME_Beginners_Luck_4.1_20200423 > BeginnersLuck > Chapter4 > 1. Data Preparation
    hayasaka
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits