Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
Sign in
  • KNIME Hub
  • Nodes
  • Normalizer
NodeNode / Manipulator

Normalizer

This node normalizes the values of all (numeric) columns. In the dialog, you can choose the columns you want to work on. The following normalization methods are available in the dialog:

Node details

Input ports
  1. Table to normalize Type: Data
    Table requiring normalization of some or all columns.
Output ports
  1. Normalized table Type: Data
    Table with normalized columns.
  2. Normalize Model Type: Normalizer
    Model containing normalization parameters, which can be used in a "normalize apply" node to normalize test data the same way as the training data has been normalized.

Related workflows & nodes

  1. Clustering with DBSCAN
    clustering machine learning data mining +3
    This workflow performs clustering of the iris dataset using DBSCAN. Notice the Numeric Distances node to feed the DBSCA…
    rs > Data Science Guide > Workflows > Chapter7 > 03_DBSCAN
  2. Breast Cancer Prediction Production Workflow
    atanu > Public > Breast Cancer Prediction Production Workflow
  3. Classification of the iris data using kNN
    TheGuideBook kNN k Nearest Neighbor +2
    This workflow solves a classification problem on the iris dataset using the k-Nearest Neighbor (kNN) algorithm.
    rs > Data Science Guide > Workflows > Chapter9 > 01_kNN
  4. Exercise 5_2-Wine Quality
    dataminer_1 > Public > UCI Applications Project > Workflows > Exercise 5_2-Wine Quality
  5. Hierarchical Clustering
    clustering machine learning data mining +3
    This workflow clusters the iris dataset using Hierarchical Clustering
    rs > Data Science Guide > Workflows > Chapter7 > 01_HierarchicalClustering
  6. SVM on iris dataset
    TheGuideBook SVM classification +2
    This workflow solves a classification problem on the iris dataset using Support Vector Machines (SVM).
    rs > Data Science Guide > Workflows > Chapter9 > 03_SVM
  7. SVM on iris dataset
    TheGuideBook SVM classification +2
    This workflow solves a classification problem on the iris dataset using Support Vector Machines (SVM).
    jessi > Public > 03_SVM
  8. KBL: Clustering and Regression
    KNIMEPress Education k-means +3
    Exercise on linear regression and k-means clustering.
    hayasaka > Public > KNIMEPress > KNIME_Beginners_Luck_4.1_20200423 > BeginnersLuck > Chapter4 > 4. Clustering and Regression
  9. 01_Basic_Clustering_Workflow
    Clustering Beginners Start +3
    Basic Example of data access (File Reading), data wrangling (Column Filter + Normalization), clustering (k-Means), and …
    rs > Data Science Guide > Workflows > AppendixB > 01_Basic_Clustering_Workflow
  10. KBL: Data Preparation for Classification
    KNIMEPress Education Missing value +3
    Examples of common data preparation methods for machine learning, including missing value handling, normalization, and …
    hayasaka > Public > KNIMEPress > KNIME_Beginners_Luck_4.1_20200423 > BeginnersLuck > Chapter4 > 1. Data Preparation
Extension

This node is part of the extension

KNIME Base nodesTrusted extension
Version 4.3.0
Short link

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2021 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits