Hub
Pricing About
NodeNode / Manipulator

Target Shuffling

ManipulationColumnConvert & Replace
Drag & drop
Like

This node performs Target Shuffling by randomly permuting the values in one column of the input table. This will break any connection between input variables (learning columns) and response variable (target column) while retaining the overall distribution of the target variable. Target shuffling is used to estimate the baseline performance of a predictive model. It's expected that the quality of a model (accuracy, area under the curve, R², ...) will decrease drastically if the target values were shuffled as any relationship between input and target was removed.
It's advisable to repeat this process (target shuffling + model building + model evaluation) many times and record the bogus result in order to receive good estimates on how well the real model performs in comparison to randomized data.
Target shuffling is sometimes called randomization test or y-scrambling. For more information see also Handbook of Statistical Analysis and Data Mining Applications by Gary Miner, Robert Nisbet, John Elder IV.

Node details

Input ports
  1. Type: Table
    Input data
    Any data table
Output ports
  1. Type: Table
    Shuffled data
    Input table with values shuffled in one column

Extension

The Target Shuffling node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits