Hub
Pricing About
NodeNode / Manipulator

Spark Missing Value

Tools & ServicesApache SparkColumnTransform
Drag & drop
Like

This node helps handle missing values found in the ingoing Spark data. The first tab in the dialog (labeled Default ) provides default handling options for all columns of a given type. These settings apply to all columns in the input table that are not explicitly mentioned in the second tab (labeled Individual ). This second tab permits individual settings for each available column (thus, overriding the default). To make use of this second approach, select a column or a list of columns which needs extra handling, click "Add", and set the parameters. Click on the label with the column name(s), will select all covered columns in the column list. To remove this extra handling (and instead use the default handling), click the "Remove" button for this column.

This node requires at least Apache Spark 2.0

Node details

Input ports
  1. Type: Spark Data
    Spark Data
    Spark data with missing values
Output ports
  1. Type: Spark Data
    Spark Data
    Spark data with replaced values
  2. Type: PMML
    PMML Model
    PMML documenting the missing value replacements

Extension

The Spark Missing Value node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits