Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Nodes
  • Random Label Assigner
NodeNode / Manipulator

Random Label Assigner

IO Other Modular Data Generation Categorical
Drag & drop
Like
Copy short link

Assigns the labels based on the probabilities to the rows. Here we use the class names and the probabilities given in the dialog to assign the new class column. Categories with empty names or a probability less or equal to 0 are ignored.

Node details

Input ports
  1. Type: Table
    Data table
    Simply data, (as the node does not use any information in this data, there are no constraints)
Output ports
  1. Type: Table
    One additional string column
    The original data with one new string column.

Extension

The Random Label Assigner node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    [Community Nodes] CN-155 Scale Demographic Node
    The Scale Demographic node changes the Willingness To Pay (WTP) values of all Customers w…
    scientificstrategy > Public > Community Nodes > CN-155 Scale Demographic Node v05
  2. Go to item
    temp
    sandeepbii > Public > temp
  3. Go to item
    2017_01_23_WindGust
    iris > Public > 02_ForumExamples > 2017_01_23_WindGust
  4. Go to item
    Reproducible (Minimal) Workflow Example Template
    Template
    This is a template workflow that can help you get started in case you are reporting a bug…
    ipazin > Public > Reproducible (Minimal) Workflow Example Template
  5. Go to item
    Generating Missing Values in Existing Dataset
    Data generation Missing values
    This workflow shows how missing values can be very randomly added to the cells of a colum…
    knime > Examples > 01_Data_Access > 03_Data_Generation > 04_Generating_random_missing_values_in_an_existing_data_set
  6. Go to item
    Generating Missing Values in Existing Dataset
    Data generation Missing values
    This workflow shows how missing values can be very randomly added to the cells of a colum…
    haoran > Public > 01_Data_Access > 03_Data_Generation > 04_Generating_random_missing_values_in_an_existing_data_set
  7. Go to item
    Farkle - Generate Initial Players
    Genetic Algorithm Machine Learning
    Randomly generates the first generation of Farkle players for use in a genetic algorithm …
    pwisneskey > Public > Farkle > Farkle - Generate Initial Players
  8. Go to item
    Generating Gaussian Clusters
    Gaussian distribution Clustering Data generation
    In this workflow, each cluster is based on three Gaussian distributed values, which form …
    knime > Examples > 01_Data_Access > 03_Data_Generation > 01_Generating_clusters_with_Gaussian_distribution
  9. Go to item
    Generating Gaussian Clusters
    Gaussian distribution Clustering Data generation
    In this workflow, each cluster is based on three Gaussian distributed values, which form …
    haoran > Public > 01_Data_Access > 03_Data_Generation > 01_Generating_clusters_with_Gaussian_distribution
  10. Go to item
    Data Generation Example: Supermodels
    Data generation Gaussian distribution Beta distribution
    +1
    This workflow generates a sample model database. Each model is assigned a birthdate, hair…
    knime > Examples > 01_Data_Access > 03_Data_Generation > 03_Data_generation_model_example
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits