Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Nodes
  • Numeric Distances
NodeNode / Manipulator

Numeric Distances

Analytics Distance Calculation Distance Functions
Drag & drop
Like
Copy short link

Distance definition on numerical column(s), like for instance Euclidean or Manhattan distance. Parameters for missing value handling and normalization can be set depending on the selected distance function.

Node details

Input ports
  1. Type: Table
    Input Table
    Input data.
Output ports
  1. Type: Distance Measure
    Distance Measure
    The configured distance.

Extension

The Numeric Distances node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    2019_08_07_K_MeansWithDistances
    iris > Public > ExamplesForTheForum > 2019_08_07_K_MeansWithDistances
  2. Go to item
    Clustering with DBSCAN
    Clustering Machine learning Data mining
    +3
    This workflow performs clustering of the iris dataset using DBSCAN. Notice the Numeric Di…
    knime > Academic Alliance > Guide to Intelligent Data Science > Example Workflows > Chapter7 > 03_DBSCAN
  3. Go to item
    silhouette
    iris > Public > ExamplesForTheForum > silhouette
  4. Go to item
    Performing a k-Medoids clustering
    Clustering K-Medoids Machine learning
    +1
    This workflow shows how to perform a clustering of the iris dataset using the k-Medoids n…
    knime > Examples > 04_Analytics > 03_Clustering > 02_Performing_a_k-Medoids_Clustering
  5. Go to item
    Airport-3
    carl_oscarson > Public > Airport-3
  6. Go to item
    Airport-2
    carl_oscarson > Public > Airport-2
  7. Go to item
    CS-163 Porters Five Forces - Part 03 Bargaining Power of Buyers
    Market Simulation
    [Case Studies] CS-163 Porters Five Forces - Part 03 Bargaining Power of Buyers The Bargai…
    scientificstrategy > Public > Case Studies > CS-163 Porters Five Forces - Part 03 Bargaining Power of Buyers v05
  8. Go to item
    Clustering on simulated clustered data
    K-means Hierarchical clustering DBSCAN
    Clustering algorithms applied to simulated clustered data with 6 clusters
    hayasaka > Public > Clustering > ApplicationToyData_UnlabeledTruth
  9. Go to item
    Clustering on the Iris data
    K-means Hierarchical clustering DBSCAN
    Clustering algorithms applied to simulated clustered data with 6 clusters
    hayasaka > Public > Clustering > ApplicationIris_UnlabeledTruth
  10. Go to item
    Clustering on simulated clustered data
    K-means Hierarchical clustering DBSCAN
    Clustering algorithms applied to simulated clustered data with 6 clusters
    v_ramos > Public > ApplicationToyData_UnlabeledTruth
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits