Hub
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Hub
  • Nodes
  • Keras Network Executor
NodeNode / Predictor

Keras Network Executor

Analytics Integrations Deep Learning Keras Streamable
Drag & drop
Like
Copy short link

This node executes a Keras deep learning network on a compatible external back end that can be selected by the user.

External resources

  • KNIME Deep Learning Keras Integration

Node details

Input ports
  1. Type: Keras Deep Learning Network
    Keras Network
    The Keras deep learning network.
  2. Type: Table
    Data Table
    The input table.
Output ports
  1. Type: Table
    Data Table
    The output table.

Extension

The Keras Network Executor node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    isolate_keras_error
    marcelw > Public > isolate_keras_error
  2. Go to item
    00. Keras Simple Linear Regression
    autonomous > Public > Keras Examples > Regression > Keras Simple Linear Regression
  3. Go to item
    Keras Autoencoder for Fraud Detection Deployment
    Autoencoder Keras Neural network
    +16
    Read Keras model. Read deployment data, which are normalized into range [0,1]. Apply the …
    knime > Examples > 50_Applications > 39_Fraud_Detection > 04_Keras_Autoencoder_for_Fraud_Detection_Deployment
  4. Go to item
    Multi Layer Perceptron
    After the data is normalized and partitioned, Multi-Layer-Perzeptron (MLP) is trained and…
    marten_kose > Public > forum_topics > mlp+softmax > mlp+softmax
  5. Go to item
    Keras Autoencoder for Fraud Detection - Deployment
    Autoencoder Keras Neural network
    +15
    This workflow applies a trained autoencoder model to detect fraudulent transactions.
    kathrin > Codeless Deep Learning with KNIME > Chapter 5 > 02_Autoencoder_for_Fraud_Detection_Deployment
  6. Go to item
    04 Train DL Model with Keras
    This workflow is part of a collection of exercise/solution materials used at a hands on w…
    knime > Life Sciences > Events > 2020_09_GCB_Workshop > Exercises > 04_Train_DL_Model_with_Keras
  7. Go to item
    Read Images and Train VGG
    Image Analysis Deep Learning Keras
    +1
    This workflow reads image patches downloaded and prepared by the previous workflows in th…
    knime > Examples > 50_Applications > 31_Histopathology_Blog_Post > _legacy_version > 02_Read_Images_and_Train_VGG
  8. Go to item
    Read Images and Train VGG
    Life Science Image Analysis Deep Learning
    +1
    This workflow reads image patches downloaded and prepared by the previous workflows in th…
    b_eslami > Public > 31_Histopathology_Blog_Post > _legacy_version > 02_Read_Images_and_Train_VGG
  9. Go to item
    Simple Example for Multiclass Classification with Keras
    Perceptron Neural networks Deep learning
    This workflow trains a fully connected feedforward neural network with 4-8-3 units per la…
    kathrin > Codeless Deep Learning with KNIME > Chapter 4 > Basic_Example_Iris_Dataset
  10. Go to item
    Classifying the iris dataset with ANN 4-3-1
    BackPropagation Perceptron Neural networks
    +2
    Exercise of the L4-DL Introduction to Deep Learning Course. The goal is to train a multil…
    knime > Education > Courses > L4-DL Introduction to Deep Learning > Session1 > Solutions > 01_Iris_Classification_ANN_Solution

No known nodes available

KNIME
Open for Innovation

KNIME AG
Hardturmstrasse 66
8005 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Server
© 2022 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits