Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Nodes
  • DL Python Network Creator
NodeNode / Source

DL Python Network Creator

Analytics Integrations Deep Learning Python
Drag & drop
Like
Copy short link

This node allows custom creation of a (Python compatible) deep learning network in a local Python installation via a user-defined script. The path to the Python executable has to be configured in Preferences → KNIME → Python. It also allows to import Jupyter notebooks as Python modules via the knime_jupyter module that is part of the Python workspace.

Node details

Output ports
  1. Type: DLPythonNetworkPortObject
    Deep Learning Network
    The output deep learning network. This is the content of the variable output_network which has to be defined in the script and has to be a deep learning network known to KNIME. The network can then be used in common "DL Python" nodes or in nodes which are specific to the network type.

Extension

The DL Python Network Creator node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    02. Define U-Net
    knime > Life Sciences > Events > 2021_09_08_GCB_CellSegmentation > Exercises > 02. Define U-Net
    knime
  2. Go to item
    isolate_keras_error
    marcelw > Public > isolate_keras_error
    marcelw
  3. Go to item
    00. Keras Simple Linear Regression
    autonomous > Public > Keras Examples > Regression > Keras Simple Linear Regression
    autonomous
  4. Go to item
    Train simple CNN
    Deep learning Keras Image classification
    In this workflow we create a simple Convolutional Neural Network using the DL Python Netw…
    knime > Examples > 04_Analytics > 14_Deep_Learning > 02_Keras > 04_Cats_and_Dogs > 02_Train_simple_CNN
    knime
  5. Go to item
    Train simple CNN
    Deep learning Keras Image classification
    In this workflow we create a simple Convolutional Neural Network using the DL Python Netw…
    kathrin > Forum Questions > 02_Train_simple_CNN
    kathrin
  6. Go to item
    Train a MLP
    Deep learning TensorFlow
    This workflow uses the TensorFlow Python bindings to create and train a multilayer percep…
    knime > Examples > 04_Analytics > 14_Deep_Learning > 03_TensorFlow > 02_Training_Tensorflow_MLP
    knime
  7. Go to item
    Neural Machine Translation English to German
    Deep learning Keras Sequence analysis
    +12
    Uses a character level encoder-decoder network of LSTMs. The encoder network reads the in…
    knime > Examples > 04_Analytics > 14_Deep_Learning > 02_Keras > 05_Neural_Machine_Translation
    knime
  8. Go to item
    Train a simple Multilayer Perceptron using TensorFlow 2
    TensorFlow 2 Deep Learning Tf
    +3
    This workflow shows how to train a simple multilayer perceptron for classification. It is…
    knime > Examples > 04_Analytics > 14_Deep_Learning > 04_TensorFlow2 > 04_Train_a_MLP
    knime
  9. Go to item
    Fine-tune VGG16 (Python)
    Deep learning Keras Image classification
    Instead of creating our own network architecture as in the previous workflow "Train simpl…
    knime > Examples > 04_Analytics > 14_Deep_Learning > 02_Keras > 04_Cats_and_Dogs > 03_Fine-tune_VGG16_Python
    knime
  10. Go to item
    Read Images and Train VGG
    Image Analysis Deep Learning Keras
    +1
    This workflow reads image patches downloaded and prepared by the previous workflows in th…
    knime > Examples > 50_Applications > 31_Histopathology_Blog_Post > _legacy_version > 02_Read_Images_and_Train_VGG
    knime
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item
  6. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits