Hub
Pricing About
NodeNode / Learner

H2O Generalized Low Rank Models (Missing Value Impute)

AnalyticsIntegrationsH2O Machine LearningModelsGeneralized Low Rank Models
Drag & drop
Like

Apply a Generalized Low Rank Model (GLRM) using H2O to reconstruct missing values or identify important features in a dataset. Note that if the input data contains no missing values, the reconstructed data returned by this node will be the same as the input data.

Node details

Input ports
  1. Type: H2O Frame
    H2O input data frame.
    H2O Frame with input data.
Output ports
  1. Type: H2O Frame
    H2O GLRM reconstructed data.
    H2O Frame with the reconstructed input data.
  2. Type: H2O Frame
    H2O GLRM X matrix.
    H2O Frame with the GLRM X matrix. The X matrix contains k principal components of the input data.

Extension

The H2O Generalized Low Rank Models (Missing Value Impute) node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits