Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Nodes
  • StanfordNLP NE Scorer
NodeNode / Other

StanfordNLP NE Scorer

Other Data Types Text Processing Enrichment
Drag & drop
Like
Copy short link

This nodes calculates some quality measures like precision, recall and f1-measures and counts the amount of true positives, false negatives and false positives to validate a Stanford NLP NE model. Internally the node tags the incoming test document set with a dictionary tagger which is based on the dictionary which was used for tagging the training set in the learner node. After tagging the documents, the input model tags the documents again and the node calculates the differences between the tags created by the dictionary tagger and the tags created by the input model.

Node details

Input ports
  1. Type: Table
    Documents input table
    The input table containing the test document data set.
  2. Type: StanfordNERModelPortObject
    Model input
    The input port object containing the StanfordNLP NE model, the used dictionary and the used tag.
Output ports
  1. Type: Table
    Scores table
    The table containing the validation scores.

Extension

The StanfordNLP NE Scorer node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
    NER Tagger Model Training
    NLP Natural Language Processing NER
    +1
    This workflows shows how to train a model for named-entity recognition. The workflow star…
    knime > Examples > 08_Other_Analytics_Types > 01_Text_Processing > 14_NER_Tagger_Model_Training
    knime
  2. Go to item
    NER Tagger Model Training
    Education
    This workflows shows how to train a model for named-entity recognition. The model can be …
    knime > Education > Courses > L4-TP Introduction to Text Processing > Supplementary Workflows > NER_Tagger_Model_Training
    knime
  3. Go to item
    Tagging of Disease Names in Biomedical Literature
    Text mining Network mining Practicing Data Science
    Automated access to disease information is an important goal of information extraction an…
    knime > Examples > 08_Other_Analytics_Types > 02_Chemistry_and_Life_Sciences > 03_Fun_with_Tags
    knime
  4. Go to item
    Fun with Tags
    Automated access to disease information is an important goal of information extraction an…
    b_eslami > Public > 02_Chemistry_and_Life_Sciences > 03_Fun_with_Tags
    b_eslami
  5. Go to item
    Fun with Tags
    Biology
    Automated access to disease information is an important goal of information extraction an…
    b_eslami > Public > 02_Chemistry_and_Life_Sciences > 02_Fetch_And_Transform_PubChem_Data > 03_Fun_with_Tags
    b_eslami
  6. Go to item
    Train a NER Model
    Preprocessing Filter Model training
    +3
    This workflow describes the model training process. The first part reads the text corpus …
    knime > Examples > 08_Other_Analytics_Types > 02_Chemistry_and_Life_Sciences > 04_Prediction_Of_Drug_Purpose > 02_Train_A_NER_Model
    knime
  7. Go to item
    Train a NER Model
    Preprocessing Filter Model training
    +3
    This workflow describes the model training process. The first part reads the text corpus …
    b_eslami > Public > 02_Chemistry_and_Life_Sciences > 04_Prediction_Of_Drug_Purpose > 02_Train_A_NER_Model
    b_eslami
  1. Go to item
  2. Go to item
  3. Go to item
  4. Go to item
  5. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • E-Learning course
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • KNIME Open Source Story
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more on KNIME Business Hub
© 2023 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Credits