Hub
Pricing About
NodeNode / Learner

AODE (3.6) (legacy)

AnalyticsIntegrationsWekaWeka (3.6)Classification Algorithms
+1
Drag & drop
Like

AODE achieves highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models that have weaker (and hence less detrimental) independence assumptions than naive Bayes. The resulting algorithm is computationally efficient while delivering highly accurate classification on many learning tasks. For more information, see G. Webb, J. Boughton, Z. Wang (2005). Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning. 58(1):5-24. Further papers are available at http://www.csse.monash.edu.au/~webb/. Can use an m-estimate for smoothing base probability estimates in place of the Laplace correction (via option -M). Default frequency limit set to 1.

(based on WEKA 3.6)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Node details

Input ports
  1. Type: Table
    Training data
    Training data
Output ports
  1. Type: Weka 3.6 Classifier
    Trained classifier
    Trained classifier

Extension

The AODE (3.6) (legacy) node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits