Hub
Pricing About
NodeNode / Learner

HotSpot (3.7)

AnalyticsIntegrationsWekaWeka (3.7)Association Rules
Drag & drop
Like

HotSpot learns a set of rules (displayed in a tree-like structure) that maximize/minimize a target variable/value of interest

With a nominal target, one might want to look for segments of the data where there is a high probability of a minority value occuring (given the constraint of a minimum support).For a numeric target, one might be interested in finding segments where this is higher on average than in the whole data set.

For example, in a health insurance scenario, find which health insurance groups are at the highest risk (have the highest claim ratio), or, which groups have the highest average insurance payout.

(based on WEKA 3.7)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Node details

Input ports
  1. Type: Table
    Training data
    Training data

Extension

The HotSpot (3.7) node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits