Hub
Pricing About
  • Software
  • Blog
  • Forum
  • Events
  • Documentation
  • About KNIME
  • KNIME Community Hub
  • Nodes
  • ClassBalancedND (3.7)
NodeNode / Learner

ClassBalancedND (3.7)

Analytics Integrations Weka Weka (3.7) Classification Algorithms
+2
Drag & drop
Like
Copy short link

A meta classifier for handling multi-class datasets with 2-class classifiers by building a random class-balanced tree structure. For more info, check Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems

In: PKDD, 84-95, 2005.

Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems.In: Twenty-first International Conference on Machine Learning, 2004.

(based on WEKA 3.7)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Node details

Input ports
  1. Type: Table
    Training data
    Training data
Output ports
  1. Type: Weka 3.7 Classifier
    Trained model
    Trained model

Extension

The ClassBalancedND (3.7) node is part of this extension:

  1. Go to item

Related workflows & nodes

    1. Go to item

    KNIME
    Open for Innovation

    KNIME AG
    Talacker 50
    8001 Zurich, Switzerland
    • Software
    • Getting started
    • Documentation
    • E-Learning course
    • Solutions
    • KNIME Hub
    • KNIME Forum
    • Blog
    • Events
    • Partner
    • Developers
    • KNIME Home
    • KNIME Open Source Story
    • Careers
    • Contact us
    Download KNIME Analytics Platform Read more on KNIME Business Hub
    © 2023 KNIME AG. All rights reserved.
    • Trademarks
    • Imprint
    • Privacy
    • Terms & Conditions
    • Credits