Hub
Pricing About
NodeNode / Learner

LAC (3.7)

AnalyticsIntegrationsWekaWeka (3.7)Classification Algorithms
+1
Drag & drop
Like

Implements the LAC (Lazy Associative Classifier) algorithm, which uses associative rules to execute classifications

Unlike other Apriori-based classifiers, LAC algorithm computes association rules in a demand-driven basis.For each instance to be classified, it filters the training set and produces only useful rules for that instance, outperforming traditional associative classifiers in both time and accuracy.

For more information: [Adriano Veloso, Wagner Meira Jr., Mohammed Zaki.Lazy Associative Classification.

ICDM '06 Proceedings of the Sixth International Conference on Data Mining, Pages 645-654, IEEE Computer Society Washington, DC, USA].

(based on WEKA 3.7)

For further options, click the 'More' - button in the dialog.

All weka dialogs have a panel where you can specify classifier-specific parameters.

Node details

Input ports
  1. Type: Table
    Training data
    Training data
Output ports
  1. Type: Weka 3.7 Classifier
    Trained model
    Trained model

Extension

The LAC (3.7) node is part of this extension:

  1. Go to item

Related workflows & nodes

  1. Go to item
  2. Go to item
  3. Go to item

KNIME
Open for Innovation

KNIME AG
Talacker 50
8001 Zurich, Switzerland
  • Software
  • Getting started
  • Documentation
  • Courses + Certification
  • Solutions
  • KNIME Hub
  • KNIME Forum
  • Blog
  • Events
  • Partner
  • Developers
  • KNIME Home
  • Careers
  • Contact us
Download KNIME Analytics Platform Read more about KNIME Business Hub
© 2025 KNIME AG. All rights reserved.
  • Trademarks
  • Imprint
  • Privacy
  • Terms & Conditions
  • Data Processing Agreement
  • Credits